| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfrelp | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a relation-preserving function. (Contributed by Eric Schmidt, 11-Oct-2025.) |
| Ref | Expression |
|---|---|
| nfrelp.1 | ⊢ Ⅎ𝑥𝐻 |
| nfrelp.2 | ⊢ Ⅎ𝑥𝑅 |
| nfrelp.3 | ⊢ Ⅎ𝑥𝑆 |
| nfrelp.4 | ⊢ Ⅎ𝑥𝐴 |
| nfrelp.5 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfrelp | ⊢ Ⅎ𝑥 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-relp 44905 | . 2 ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦𝑅𝑧 → (𝐻‘𝑦)𝑆(𝐻‘𝑧)))) | |
| 2 | nfrelp.1 | . . . 4 ⊢ Ⅎ𝑥𝐻 | |
| 3 | nfrelp.4 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nfrelp.5 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 2, 3, 4 | nff 6691 | . . 3 ⊢ Ⅎ𝑥 𝐻:𝐴⟶𝐵 |
| 6 | nfcv 2893 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
| 7 | nfrelp.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝑅 | |
| 8 | nfcv 2893 | . . . . . . 7 ⊢ Ⅎ𝑥𝑧 | |
| 9 | 6, 7, 8 | nfbr 5162 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦𝑅𝑧 |
| 10 | 2, 6 | nffv 6875 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐻‘𝑦) |
| 11 | nfrelp.3 | . . . . . . 7 ⊢ Ⅎ𝑥𝑆 | |
| 12 | 2, 8 | nffv 6875 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐻‘𝑧) |
| 13 | 10, 11, 12 | nfbr 5162 | . . . . . 6 ⊢ Ⅎ𝑥(𝐻‘𝑦)𝑆(𝐻‘𝑧) |
| 14 | 9, 13 | nfim 1896 | . . . . 5 ⊢ Ⅎ𝑥(𝑦𝑅𝑧 → (𝐻‘𝑦)𝑆(𝐻‘𝑧)) |
| 15 | 3, 14 | nfralw 3288 | . . . 4 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝐴 (𝑦𝑅𝑧 → (𝐻‘𝑦)𝑆(𝐻‘𝑧)) |
| 16 | 3, 15 | nfralw 3288 | . . 3 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦𝑅𝑧 → (𝐻‘𝑦)𝑆(𝐻‘𝑧)) |
| 17 | 5, 16 | nfan 1899 | . 2 ⊢ Ⅎ𝑥(𝐻:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦𝑅𝑧 → (𝐻‘𝑦)𝑆(𝐻‘𝑧))) |
| 18 | 1, 17 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1783 Ⅎwnfc 2878 ∀wral 3046 class class class wbr 5115 ⟶wf 6515 ‘cfv 6519 RelPres wrelp 44904 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-fv 6527 df-relp 44905 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |