Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfrelp Structured version   Visualization version   GIF version

Theorem nfrelp 44911
Description: Bound-variable hypothesis builder for a relation-preserving function. (Contributed by Eric Schmidt, 11-Oct-2025.)
Hypotheses
Ref Expression
nfrelp.1 𝑥𝐻
nfrelp.2 𝑥𝑅
nfrelp.3 𝑥𝑆
nfrelp.4 𝑥𝐴
nfrelp.5 𝑥𝐵
Assertion
Ref Expression
nfrelp 𝑥 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵)

Proof of Theorem nfrelp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-relp 44905 . 2 (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴𝐵 ∧ ∀𝑦𝐴𝑧𝐴 (𝑦𝑅𝑧 → (𝐻𝑦)𝑆(𝐻𝑧))))
2 nfrelp.1 . . . 4 𝑥𝐻
3 nfrelp.4 . . . 4 𝑥𝐴
4 nfrelp.5 . . . 4 𝑥𝐵
52, 3, 4nff 6691 . . 3 𝑥 𝐻:𝐴𝐵
6 nfcv 2893 . . . . . . 7 𝑥𝑦
7 nfrelp.2 . . . . . . 7 𝑥𝑅
8 nfcv 2893 . . . . . . 7 𝑥𝑧
96, 7, 8nfbr 5162 . . . . . 6 𝑥 𝑦𝑅𝑧
102, 6nffv 6875 . . . . . . 7 𝑥(𝐻𝑦)
11 nfrelp.3 . . . . . . 7 𝑥𝑆
122, 8nffv 6875 . . . . . . 7 𝑥(𝐻𝑧)
1310, 11, 12nfbr 5162 . . . . . 6 𝑥(𝐻𝑦)𝑆(𝐻𝑧)
149, 13nfim 1896 . . . . 5 𝑥(𝑦𝑅𝑧 → (𝐻𝑦)𝑆(𝐻𝑧))
153, 14nfralw 3288 . . . 4 𝑥𝑧𝐴 (𝑦𝑅𝑧 → (𝐻𝑦)𝑆(𝐻𝑧))
163, 15nfralw 3288 . . 3 𝑥𝑦𝐴𝑧𝐴 (𝑦𝑅𝑧 → (𝐻𝑦)𝑆(𝐻𝑧))
175, 16nfan 1899 . 2 𝑥(𝐻:𝐴𝐵 ∧ ∀𝑦𝐴𝑧𝐴 (𝑦𝑅𝑧 → (𝐻𝑦)𝑆(𝐻𝑧)))
181, 17nfxfr 1853 1 𝑥 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1783  wnfc 2878  wral 3046   class class class wbr 5115  wf 6515  cfv 6519   RelPres wrelp 44904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-fv 6527  df-relp 44905
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator