Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfrelp Structured version   Visualization version   GIF version

Theorem nfrelp 44927
Description: Bound-variable hypothesis builder for a relation-preserving function. (Contributed by Eric Schmidt, 11-Oct-2025.)
Hypotheses
Ref Expression
nfrelp.1 𝑥𝐻
nfrelp.2 𝑥𝑅
nfrelp.3 𝑥𝑆
nfrelp.4 𝑥𝐴
nfrelp.5 𝑥𝐵
Assertion
Ref Expression
nfrelp 𝑥 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵)

Proof of Theorem nfrelp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-relp 44921 . 2 (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴𝐵 ∧ ∀𝑦𝐴𝑧𝐴 (𝑦𝑅𝑧 → (𝐻𝑦)𝑆(𝐻𝑧))))
2 nfrelp.1 . . . 4 𝑥𝐻
3 nfrelp.4 . . . 4 𝑥𝐴
4 nfrelp.5 . . . 4 𝑥𝐵
52, 3, 4nff 6712 . . 3 𝑥 𝐻:𝐴𝐵
6 nfcv 2897 . . . . . . 7 𝑥𝑦
7 nfrelp.2 . . . . . . 7 𝑥𝑅
8 nfcv 2897 . . . . . . 7 𝑥𝑧
96, 7, 8nfbr 5170 . . . . . 6 𝑥 𝑦𝑅𝑧
102, 6nffv 6896 . . . . . . 7 𝑥(𝐻𝑦)
11 nfrelp.3 . . . . . . 7 𝑥𝑆
122, 8nffv 6896 . . . . . . 7 𝑥(𝐻𝑧)
1310, 11, 12nfbr 5170 . . . . . 6 𝑥(𝐻𝑦)𝑆(𝐻𝑧)
149, 13nfim 1895 . . . . 5 𝑥(𝑦𝑅𝑧 → (𝐻𝑦)𝑆(𝐻𝑧))
153, 14nfralw 3294 . . . 4 𝑥𝑧𝐴 (𝑦𝑅𝑧 → (𝐻𝑦)𝑆(𝐻𝑧))
163, 15nfralw 3294 . . 3 𝑥𝑦𝐴𝑧𝐴 (𝑦𝑅𝑧 → (𝐻𝑦)𝑆(𝐻𝑧))
175, 16nfan 1898 . 2 𝑥(𝐻:𝐴𝐵 ∧ ∀𝑦𝐴𝑧𝐴 (𝑦𝑅𝑧 → (𝐻𝑦)𝑆(𝐻𝑧)))
181, 17nfxfr 1852 1 𝑥 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1782  wnfc 2882  wral 3050   class class class wbr 5123  wf 6537  cfv 6541   RelPres wrelp 44920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fv 6549  df-relp 44921
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator