Step | Hyp | Ref
| Expression |
1 | | relpfrlem.1 |
. . . . . . 7
⊢ (𝜑 → 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵)) |
2 | | relpf 44960 |
. . . . . . 7
⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → 𝐻:𝐴⟶𝐵) |
3 | 1, 2 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐻:𝐴⟶𝐵) |
4 | | ffn 6744 |
. . . . . . . 8
⊢ (𝐻:𝐴⟶𝐵 → 𝐻 Fn 𝐴) |
5 | | n0 4362 |
. . . . . . . . . 10
⊢ (𝑥 ≠ ∅ ↔
∃𝑦 𝑦 ∈ 𝑥) |
6 | | fnfvima 7260 |
. . . . . . . . . . . . 13
⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥) → (𝐻‘𝑦) ∈ (𝐻 “ 𝑥)) |
7 | 6 | ne0d 4351 |
. . . . . . . . . . . 12
⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥) → (𝐻 “ 𝑥) ≠ ∅) |
8 | 7 | 3expia 1122 |
. . . . . . . . . . 11
⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ⊆ 𝐴) → (𝑦 ∈ 𝑥 → (𝐻 “ 𝑥) ≠ ∅)) |
9 | 8 | exlimdv 1933 |
. . . . . . . . . 10
⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ⊆ 𝐴) → (∃𝑦 𝑦 ∈ 𝑥 → (𝐻 “ 𝑥) ≠ ∅)) |
10 | 5, 9 | biimtrid 242 |
. . . . . . . . 9
⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ⊆ 𝐴) → (𝑥 ≠ ∅ → (𝐻 “ 𝑥) ≠ ∅)) |
11 | 10 | expimpd 453 |
. . . . . . . 8
⊢ (𝐻 Fn 𝐴 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → (𝐻 “ 𝑥) ≠ ∅)) |
12 | 4, 11 | syl 17 |
. . . . . . 7
⊢ (𝐻:𝐴⟶𝐵 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → (𝐻 “ 𝑥) ≠ ∅)) |
13 | | fimass 6764 |
. . . . . . 7
⊢ (𝐻:𝐴⟶𝐵 → (𝐻 “ 𝑥) ⊆ 𝐵) |
14 | 12, 13 | jctild 525 |
. . . . . 6
⊢ (𝐻:𝐴⟶𝐵 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ((𝐻 “ 𝑥) ⊆ 𝐵 ∧ (𝐻 “ 𝑥) ≠ ∅))) |
15 | 3, 14 | syl 17 |
. . . . 5
⊢ (𝜑 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ((𝐻 “ 𝑥) ⊆ 𝐵 ∧ (𝐻 “ 𝑥) ≠ ∅))) |
16 | | dffr3 6125 |
. . . . . 6
⊢ (𝑆 Fr 𝐵 ↔ ∀𝑧((𝑧 ⊆ 𝐵 ∧ 𝑧 ≠ ∅) → ∃𝑤 ∈ 𝑧 (𝑧 ∩ (◡𝑆 “ {𝑤})) = ∅)) |
17 | | relpfrlem.2 |
. . . . . . 7
⊢ (𝜑 → (𝐻 “ 𝑥) ∈ V) |
18 | | sseq1 4024 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐻 “ 𝑥) → (𝑧 ⊆ 𝐵 ↔ (𝐻 “ 𝑥) ⊆ 𝐵)) |
19 | | neeq1 3003 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐻 “ 𝑥) → (𝑧 ≠ ∅ ↔ (𝐻 “ 𝑥) ≠ ∅)) |
20 | 18, 19 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑧 = (𝐻 “ 𝑥) → ((𝑧 ⊆ 𝐵 ∧ 𝑧 ≠ ∅) ↔ ((𝐻 “ 𝑥) ⊆ 𝐵 ∧ (𝐻 “ 𝑥) ≠ ∅))) |
21 | | ineq1 4224 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝐻 “ 𝑥) → (𝑧 ∩ (◡𝑆 “ {𝑤})) = ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤}))) |
22 | 21 | eqeq1d 2739 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐻 “ 𝑥) → ((𝑧 ∩ (◡𝑆 “ {𝑤})) = ∅ ↔ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅)) |
23 | 22 | rexeqbi1dv 3339 |
. . . . . . . . 9
⊢ (𝑧 = (𝐻 “ 𝑥) → (∃𝑤 ∈ 𝑧 (𝑧 ∩ (◡𝑆 “ {𝑤})) = ∅ ↔ ∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅)) |
24 | 20, 23 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑧 = (𝐻 “ 𝑥) → (((𝑧 ⊆ 𝐵 ∧ 𝑧 ≠ ∅) → ∃𝑤 ∈ 𝑧 (𝑧 ∩ (◡𝑆 “ {𝑤})) = ∅) ↔ (((𝐻 “ 𝑥) ⊆ 𝐵 ∧ (𝐻 “ 𝑥) ≠ ∅) → ∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅))) |
25 | 24 | spcgv 3599 |
. . . . . . 7
⊢ ((𝐻 “ 𝑥) ∈ V → (∀𝑧((𝑧 ⊆ 𝐵 ∧ 𝑧 ≠ ∅) → ∃𝑤 ∈ 𝑧 (𝑧 ∩ (◡𝑆 “ {𝑤})) = ∅) → (((𝐻 “ 𝑥) ⊆ 𝐵 ∧ (𝐻 “ 𝑥) ≠ ∅) → ∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅))) |
26 | 17, 25 | syl 17 |
. . . . . 6
⊢ (𝜑 → (∀𝑧((𝑧 ⊆ 𝐵 ∧ 𝑧 ≠ ∅) → ∃𝑤 ∈ 𝑧 (𝑧 ∩ (◡𝑆 “ {𝑤})) = ∅) → (((𝐻 “ 𝑥) ⊆ 𝐵 ∧ (𝐻 “ 𝑥) ≠ ∅) → ∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅))) |
27 | 16, 26 | biimtrid 242 |
. . . . 5
⊢ (𝜑 → (𝑆 Fr 𝐵 → (((𝐻 “ 𝑥) ⊆ 𝐵 ∧ (𝐻 “ 𝑥) ≠ ∅) → ∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅))) |
28 | 15, 27 | syl5d 73 |
. . . 4
⊢ (𝜑 → (𝑆 Fr 𝐵 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅))) |
29 | 3 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → 𝐻:𝐴⟶𝐵) |
30 | 29 | ffund 6748 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → Fun 𝐻) |
31 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅) → 𝑤 ∈ (𝐻 “ 𝑥)) |
32 | | fvelima 6981 |
. . . . . . . . . 10
⊢ ((Fun
𝐻 ∧ 𝑤 ∈ (𝐻 “ 𝑥)) → ∃𝑦 ∈ 𝑥 (𝐻‘𝑦) = 𝑤) |
33 | 30, 31, 32 | syl2an 596 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐴) ∧ (𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅)) → ∃𝑦 ∈ 𝑥 (𝐻‘𝑦) = 𝑤) |
34 | | sneq 4644 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 = (𝐻‘𝑦) → {𝑤} = {(𝐻‘𝑦)}) |
35 | 34 | eqcoms 2745 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐻‘𝑦) = 𝑤 → {𝑤} = {(𝐻‘𝑦)}) |
36 | 35 | imaeq2d 6085 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐻‘𝑦) = 𝑤 → (◡𝑆 “ {𝑤}) = (◡𝑆 “ {(𝐻‘𝑦)})) |
37 | 36 | ineq2d 4231 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐻‘𝑦) = 𝑤 → ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {(𝐻‘𝑦)}))) |
38 | 37 | eqeq1d 2739 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐻‘𝑦) = 𝑤 → (((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅ ↔ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {(𝐻‘𝑦)})) = ∅)) |
39 | 38 | biimpd 229 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐻‘𝑦) = 𝑤 → (((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅ → ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {(𝐻‘𝑦)})) = ∅)) |
40 | | ssel 3992 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ⊆ 𝐴 → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴)) |
41 | 40 | imdistani 568 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥) → (𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐴)) |
42 | | relpmin 44962 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (((𝐻 “ 𝑥) ∩ (◡𝑆 “ {(𝐻‘𝑦)})) = ∅ → (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) |
43 | 1, 41, 42 | syl2an 596 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥)) → (((𝐻 “ 𝑥) ∩ (◡𝑆 “ {(𝐻‘𝑦)})) = ∅ → (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) |
44 | 39, 43 | sylan9r 508 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥)) ∧ (𝐻‘𝑦) = 𝑤) → (((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅ → (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) |
45 | 44 | adantld 490 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥)) ∧ (𝐻‘𝑦) = 𝑤) → ((𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅) → (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) |
46 | 45 | exp42 435 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑥 ⊆ 𝐴 → (𝑦 ∈ 𝑥 → ((𝐻‘𝑦) = 𝑤 → ((𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅) → (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅))))) |
47 | 46 | imp 406 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → (𝑦 ∈ 𝑥 → ((𝐻‘𝑦) = 𝑤 → ((𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅) → (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)))) |
48 | 47 | com3l 89 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝑥 → ((𝐻‘𝑦) = 𝑤 → ((𝜑 ∧ 𝑥 ⊆ 𝐴) → ((𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅) → (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)))) |
49 | 48 | com4t 93 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → ((𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅) → (𝑦 ∈ 𝑥 → ((𝐻‘𝑦) = 𝑤 → (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)))) |
50 | 49 | imp 406 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐴) ∧ (𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅)) → (𝑦 ∈ 𝑥 → ((𝐻‘𝑦) = 𝑤 → (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅))) |
51 | 50 | reximdvai 3165 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐴) ∧ (𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅)) → (∃𝑦 ∈ 𝑥 (𝐻‘𝑦) = 𝑤 → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) |
52 | 33, 51 | mpd 15 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐴) ∧ (𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅)) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅) |
53 | 52 | rexlimdvaa 3156 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → (∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅ → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) |
54 | 53 | ex 412 |
. . . . . 6
⊢ (𝜑 → (𝑥 ⊆ 𝐴 → (∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅ → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅))) |
55 | 54 | adantrd 491 |
. . . . 5
⊢ (𝜑 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → (∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅ → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅))) |
56 | 55 | a2d 29 |
. . . 4
⊢ (𝜑 → (((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅) → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅))) |
57 | 28, 56 | syld 47 |
. . 3
⊢ (𝜑 → (𝑆 Fr 𝐵 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅))) |
58 | 57 | alrimdv 1929 |
. 2
⊢ (𝜑 → (𝑆 Fr 𝐵 → ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅))) |
59 | | dffr3 6125 |
. 2
⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) |
60 | 58, 59 | imbitrrdi 252 |
1
⊢ (𝜑 → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |