Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relpfrlem Structured version   Visualization version   GIF version

Theorem relpfrlem 44985
Description: Lemma for relpfr 44986. Proved without using the Axiom of Replacement. This is isofrlem 7274 with weaker hypotheses. (Contributed by Eric Schmidt, 11-Oct-2025.)
Hypotheses
Ref Expression
relpfrlem.1 (𝜑𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵))
relpfrlem.2 (𝜑 → (𝐻𝑥) ∈ V)
Assertion
Ref Expression
relpfrlem (𝜑 → (𝑆 Fr 𝐵𝑅 Fr 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐻   𝜑,𝑥   𝑥,𝑅   𝑥,𝑆

Proof of Theorem relpfrlem
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relpfrlem.1 . . . . . . 7 (𝜑𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵))
2 relpf 44982 . . . . . . 7 (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → 𝐻:𝐴𝐵)
31, 2syl 17 . . . . . 6 (𝜑𝐻:𝐴𝐵)
4 ffn 6651 . . . . . . . 8 (𝐻:𝐴𝐵𝐻 Fn 𝐴)
5 n0 4303 . . . . . . . . . 10 (𝑥 ≠ ∅ ↔ ∃𝑦 𝑦𝑥)
6 fnfvima 7167 . . . . . . . . . . . . 13 ((𝐻 Fn 𝐴𝑥𝐴𝑦𝑥) → (𝐻𝑦) ∈ (𝐻𝑥))
76ne0d 4292 . . . . . . . . . . . 12 ((𝐻 Fn 𝐴𝑥𝐴𝑦𝑥) → (𝐻𝑥) ≠ ∅)
873expia 1121 . . . . . . . . . . 11 ((𝐻 Fn 𝐴𝑥𝐴) → (𝑦𝑥 → (𝐻𝑥) ≠ ∅))
98exlimdv 1934 . . . . . . . . . 10 ((𝐻 Fn 𝐴𝑥𝐴) → (∃𝑦 𝑦𝑥 → (𝐻𝑥) ≠ ∅))
105, 9biimtrid 242 . . . . . . . . 9 ((𝐻 Fn 𝐴𝑥𝐴) → (𝑥 ≠ ∅ → (𝐻𝑥) ≠ ∅))
1110expimpd 453 . . . . . . . 8 (𝐻 Fn 𝐴 → ((𝑥𝐴𝑥 ≠ ∅) → (𝐻𝑥) ≠ ∅))
124, 11syl 17 . . . . . . 7 (𝐻:𝐴𝐵 → ((𝑥𝐴𝑥 ≠ ∅) → (𝐻𝑥) ≠ ∅))
13 fimass 6671 . . . . . . 7 (𝐻:𝐴𝐵 → (𝐻𝑥) ⊆ 𝐵)
1412, 13jctild 525 . . . . . 6 (𝐻:𝐴𝐵 → ((𝑥𝐴𝑥 ≠ ∅) → ((𝐻𝑥) ⊆ 𝐵 ∧ (𝐻𝑥) ≠ ∅)))
153, 14syl 17 . . . . 5 (𝜑 → ((𝑥𝐴𝑥 ≠ ∅) → ((𝐻𝑥) ⊆ 𝐵 ∧ (𝐻𝑥) ≠ ∅)))
16 dffr3 6048 . . . . . 6 (𝑆 Fr 𝐵 ↔ ∀𝑧((𝑧𝐵𝑧 ≠ ∅) → ∃𝑤𝑧 (𝑧 ∩ (𝑆 “ {𝑤})) = ∅))
17 relpfrlem.2 . . . . . . 7 (𝜑 → (𝐻𝑥) ∈ V)
18 sseq1 3960 . . . . . . . . . 10 (𝑧 = (𝐻𝑥) → (𝑧𝐵 ↔ (𝐻𝑥) ⊆ 𝐵))
19 neeq1 2990 . . . . . . . . . 10 (𝑧 = (𝐻𝑥) → (𝑧 ≠ ∅ ↔ (𝐻𝑥) ≠ ∅))
2018, 19anbi12d 632 . . . . . . . . 9 (𝑧 = (𝐻𝑥) → ((𝑧𝐵𝑧 ≠ ∅) ↔ ((𝐻𝑥) ⊆ 𝐵 ∧ (𝐻𝑥) ≠ ∅)))
21 ineq1 4163 . . . . . . . . . . 11 (𝑧 = (𝐻𝑥) → (𝑧 ∩ (𝑆 “ {𝑤})) = ((𝐻𝑥) ∩ (𝑆 “ {𝑤})))
2221eqeq1d 2733 . . . . . . . . . 10 (𝑧 = (𝐻𝑥) → ((𝑧 ∩ (𝑆 “ {𝑤})) = ∅ ↔ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅))
2322rexeqbi1dv 3305 . . . . . . . . 9 (𝑧 = (𝐻𝑥) → (∃𝑤𝑧 (𝑧 ∩ (𝑆 “ {𝑤})) = ∅ ↔ ∃𝑤 ∈ (𝐻𝑥)((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅))
2420, 23imbi12d 344 . . . . . . . 8 (𝑧 = (𝐻𝑥) → (((𝑧𝐵𝑧 ≠ ∅) → ∃𝑤𝑧 (𝑧 ∩ (𝑆 “ {𝑤})) = ∅) ↔ (((𝐻𝑥) ⊆ 𝐵 ∧ (𝐻𝑥) ≠ ∅) → ∃𝑤 ∈ (𝐻𝑥)((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅)))
2524spcgv 3551 . . . . . . 7 ((𝐻𝑥) ∈ V → (∀𝑧((𝑧𝐵𝑧 ≠ ∅) → ∃𝑤𝑧 (𝑧 ∩ (𝑆 “ {𝑤})) = ∅) → (((𝐻𝑥) ⊆ 𝐵 ∧ (𝐻𝑥) ≠ ∅) → ∃𝑤 ∈ (𝐻𝑥)((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅)))
2617, 25syl 17 . . . . . 6 (𝜑 → (∀𝑧((𝑧𝐵𝑧 ≠ ∅) → ∃𝑤𝑧 (𝑧 ∩ (𝑆 “ {𝑤})) = ∅) → (((𝐻𝑥) ⊆ 𝐵 ∧ (𝐻𝑥) ≠ ∅) → ∃𝑤 ∈ (𝐻𝑥)((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅)))
2716, 26biimtrid 242 . . . . 5 (𝜑 → (𝑆 Fr 𝐵 → (((𝐻𝑥) ⊆ 𝐵 ∧ (𝐻𝑥) ≠ ∅) → ∃𝑤 ∈ (𝐻𝑥)((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅)))
2815, 27syl5d 73 . . . 4 (𝜑 → (𝑆 Fr 𝐵 → ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑤 ∈ (𝐻𝑥)((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅)))
293adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐻:𝐴𝐵)
3029ffund 6655 . . . . . . . . . 10 ((𝜑𝑥𝐴) → Fun 𝐻)
31 simpl 482 . . . . . . . . . 10 ((𝑤 ∈ (𝐻𝑥) ∧ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅) → 𝑤 ∈ (𝐻𝑥))
32 fvelima 6887 . . . . . . . . . 10 ((Fun 𝐻𝑤 ∈ (𝐻𝑥)) → ∃𝑦𝑥 (𝐻𝑦) = 𝑤)
3330, 31, 32syl2an 596 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ (𝑤 ∈ (𝐻𝑥) ∧ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅)) → ∃𝑦𝑥 (𝐻𝑦) = 𝑤)
34 sneq 4586 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = (𝐻𝑦) → {𝑤} = {(𝐻𝑦)})
3534eqcoms 2739 . . . . . . . . . . . . . . . . . . . . 21 ((𝐻𝑦) = 𝑤 → {𝑤} = {(𝐻𝑦)})
3635imaeq2d 6009 . . . . . . . . . . . . . . . . . . . 20 ((𝐻𝑦) = 𝑤 → (𝑆 “ {𝑤}) = (𝑆 “ {(𝐻𝑦)}))
3736ineq2d 4170 . . . . . . . . . . . . . . . . . . 19 ((𝐻𝑦) = 𝑤 → ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ((𝐻𝑥) ∩ (𝑆 “ {(𝐻𝑦)})))
3837eqeq1d 2733 . . . . . . . . . . . . . . . . . 18 ((𝐻𝑦) = 𝑤 → (((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅ ↔ ((𝐻𝑥) ∩ (𝑆 “ {(𝐻𝑦)})) = ∅))
3938biimpd 229 . . . . . . . . . . . . . . . . 17 ((𝐻𝑦) = 𝑤 → (((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅ → ((𝐻𝑥) ∩ (𝑆 “ {(𝐻𝑦)})) = ∅))
40 ssel 3928 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴 → (𝑦𝑥𝑦𝐴))
4140imdistani 568 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐴𝑦𝑥) → (𝑥𝐴𝑦𝐴))
42 relpmin 44984 . . . . . . . . . . . . . . . . . 18 ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝑥𝐴𝑦𝐴)) → (((𝐻𝑥) ∩ (𝑆 “ {(𝐻𝑦)})) = ∅ → (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))
431, 41, 42syl2an 596 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥𝐴𝑦𝑥)) → (((𝐻𝑥) ∩ (𝑆 “ {(𝐻𝑦)})) = ∅ → (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))
4439, 43sylan9r 508 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴𝑦𝑥)) ∧ (𝐻𝑦) = 𝑤) → (((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅ → (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))
4544adantld 490 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴𝑦𝑥)) ∧ (𝐻𝑦) = 𝑤) → ((𝑤 ∈ (𝐻𝑥) ∧ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅) → (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))
4645exp42 435 . . . . . . . . . . . . . 14 (𝜑 → (𝑥𝐴 → (𝑦𝑥 → ((𝐻𝑦) = 𝑤 → ((𝑤 ∈ (𝐻𝑥) ∧ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅) → (𝑥 ∩ (𝑅 “ {𝑦})) = ∅)))))
4746imp 406 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝑦𝑥 → ((𝐻𝑦) = 𝑤 → ((𝑤 ∈ (𝐻𝑥) ∧ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅) → (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))))
4847com3l 89 . . . . . . . . . . . 12 (𝑦𝑥 → ((𝐻𝑦) = 𝑤 → ((𝜑𝑥𝐴) → ((𝑤 ∈ (𝐻𝑥) ∧ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅) → (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))))
4948com4t 93 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑤 ∈ (𝐻𝑥) ∧ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅) → (𝑦𝑥 → ((𝐻𝑦) = 𝑤 → (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))))
5049imp 406 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ (𝑤 ∈ (𝐻𝑥) ∧ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅)) → (𝑦𝑥 → ((𝐻𝑦) = 𝑤 → (𝑥 ∩ (𝑅 “ {𝑦})) = ∅)))
5150reximdvai 3143 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ (𝑤 ∈ (𝐻𝑥) ∧ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅)) → (∃𝑦𝑥 (𝐻𝑦) = 𝑤 → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))
5233, 51mpd 15 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ (𝑤 ∈ (𝐻𝑥) ∧ ((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅)) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅)
5352rexlimdvaa 3134 . . . . . . 7 ((𝜑𝑥𝐴) → (∃𝑤 ∈ (𝐻𝑥)((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅ → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))
5453ex 412 . . . . . 6 (𝜑 → (𝑥𝐴 → (∃𝑤 ∈ (𝐻𝑥)((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅ → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅)))
5554adantrd 491 . . . . 5 (𝜑 → ((𝑥𝐴𝑥 ≠ ∅) → (∃𝑤 ∈ (𝐻𝑥)((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅ → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅)))
5655a2d 29 . . . 4 (𝜑 → (((𝑥𝐴𝑥 ≠ ∅) → ∃𝑤 ∈ (𝐻𝑥)((𝐻𝑥) ∩ (𝑆 “ {𝑤})) = ∅) → ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅)))
5728, 56syld 47 . . 3 (𝜑 → (𝑆 Fr 𝐵 → ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅)))
5857alrimdv 1930 . 2 (𝜑 → (𝑆 Fr 𝐵 → ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅)))
59 dffr3 6048 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))
6058, 59imbitrrdi 252 1 (𝜑 → (𝑆 Fr 𝐵𝑅 Fr 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1539   = wceq 1541  wex 1780  wcel 2111  wne 2928  wrex 3056  Vcvv 3436  cin 3901  wss 3902  c0 4283  {csn 4576   Fr wfr 5566  ccnv 5615  cima 5619  Fun wfun 6475   Fn wfn 6476  wf 6477  cfv 6481   RelPres wrelp 44974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-fr 5569  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-relp 44975
This theorem is referenced by:  relpfr  44986
  Copyright terms: Public domain W3C validator