| Step | Hyp | Ref
 | Expression | 
| 1 |   | relpfrlem.1 | 
. . . . . . 7
⊢ (𝜑 → 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵)) | 
| 2 |   | relpf 44904 | 
. . . . . . 7
⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → 𝐻:𝐴⟶𝐵) | 
| 3 | 1, 2 | syl 17 | 
. . . . . 6
⊢ (𝜑 → 𝐻:𝐴⟶𝐵) | 
| 4 |   | ffn 6715 | 
. . . . . . . 8
⊢ (𝐻:𝐴⟶𝐵 → 𝐻 Fn 𝐴) | 
| 5 |   | n0 4333 | 
. . . . . . . . . 10
⊢ (𝑥 ≠ ∅ ↔
∃𝑦 𝑦 ∈ 𝑥) | 
| 6 |   | fnfvima 7234 | 
. . . . . . . . . . . . 13
⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥) → (𝐻‘𝑦) ∈ (𝐻 “ 𝑥)) | 
| 7 | 6 | ne0d 4322 | 
. . . . . . . . . . . 12
⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥) → (𝐻 “ 𝑥) ≠ ∅) | 
| 8 | 7 | 3expia 1121 | 
. . . . . . . . . . 11
⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ⊆ 𝐴) → (𝑦 ∈ 𝑥 → (𝐻 “ 𝑥) ≠ ∅)) | 
| 9 | 8 | exlimdv 1932 | 
. . . . . . . . . 10
⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ⊆ 𝐴) → (∃𝑦 𝑦 ∈ 𝑥 → (𝐻 “ 𝑥) ≠ ∅)) | 
| 10 | 5, 9 | biimtrid 242 | 
. . . . . . . . 9
⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ⊆ 𝐴) → (𝑥 ≠ ∅ → (𝐻 “ 𝑥) ≠ ∅)) | 
| 11 | 10 | expimpd 453 | 
. . . . . . . 8
⊢ (𝐻 Fn 𝐴 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → (𝐻 “ 𝑥) ≠ ∅)) | 
| 12 | 4, 11 | syl 17 | 
. . . . . . 7
⊢ (𝐻:𝐴⟶𝐵 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → (𝐻 “ 𝑥) ≠ ∅)) | 
| 13 |   | fimass 6735 | 
. . . . . . 7
⊢ (𝐻:𝐴⟶𝐵 → (𝐻 “ 𝑥) ⊆ 𝐵) | 
| 14 | 12, 13 | jctild 525 | 
. . . . . 6
⊢ (𝐻:𝐴⟶𝐵 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ((𝐻 “ 𝑥) ⊆ 𝐵 ∧ (𝐻 “ 𝑥) ≠ ∅))) | 
| 15 | 3, 14 | syl 17 | 
. . . . 5
⊢ (𝜑 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ((𝐻 “ 𝑥) ⊆ 𝐵 ∧ (𝐻 “ 𝑥) ≠ ∅))) | 
| 16 |   | dffr3 6097 | 
. . . . . 6
⊢ (𝑆 Fr 𝐵 ↔ ∀𝑧((𝑧 ⊆ 𝐵 ∧ 𝑧 ≠ ∅) → ∃𝑤 ∈ 𝑧 (𝑧 ∩ (◡𝑆 “ {𝑤})) = ∅)) | 
| 17 |   | relpfrlem.2 | 
. . . . . . 7
⊢ (𝜑 → (𝐻 “ 𝑥) ∈ V) | 
| 18 |   | sseq1 3989 | 
. . . . . . . . . 10
⊢ (𝑧 = (𝐻 “ 𝑥) → (𝑧 ⊆ 𝐵 ↔ (𝐻 “ 𝑥) ⊆ 𝐵)) | 
| 19 |   | neeq1 2993 | 
. . . . . . . . . 10
⊢ (𝑧 = (𝐻 “ 𝑥) → (𝑧 ≠ ∅ ↔ (𝐻 “ 𝑥) ≠ ∅)) | 
| 20 | 18, 19 | anbi12d 632 | 
. . . . . . . . 9
⊢ (𝑧 = (𝐻 “ 𝑥) → ((𝑧 ⊆ 𝐵 ∧ 𝑧 ≠ ∅) ↔ ((𝐻 “ 𝑥) ⊆ 𝐵 ∧ (𝐻 “ 𝑥) ≠ ∅))) | 
| 21 |   | ineq1 4193 | 
. . . . . . . . . . 11
⊢ (𝑧 = (𝐻 “ 𝑥) → (𝑧 ∩ (◡𝑆 “ {𝑤})) = ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤}))) | 
| 22 | 21 | eqeq1d 2736 | 
. . . . . . . . . 10
⊢ (𝑧 = (𝐻 “ 𝑥) → ((𝑧 ∩ (◡𝑆 “ {𝑤})) = ∅ ↔ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅)) | 
| 23 | 22 | rexeqbi1dv 3322 | 
. . . . . . . . 9
⊢ (𝑧 = (𝐻 “ 𝑥) → (∃𝑤 ∈ 𝑧 (𝑧 ∩ (◡𝑆 “ {𝑤})) = ∅ ↔ ∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅)) | 
| 24 | 20, 23 | imbi12d 344 | 
. . . . . . . 8
⊢ (𝑧 = (𝐻 “ 𝑥) → (((𝑧 ⊆ 𝐵 ∧ 𝑧 ≠ ∅) → ∃𝑤 ∈ 𝑧 (𝑧 ∩ (◡𝑆 “ {𝑤})) = ∅) ↔ (((𝐻 “ 𝑥) ⊆ 𝐵 ∧ (𝐻 “ 𝑥) ≠ ∅) → ∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅))) | 
| 25 | 24 | spcgv 3579 | 
. . . . . . 7
⊢ ((𝐻 “ 𝑥) ∈ V → (∀𝑧((𝑧 ⊆ 𝐵 ∧ 𝑧 ≠ ∅) → ∃𝑤 ∈ 𝑧 (𝑧 ∩ (◡𝑆 “ {𝑤})) = ∅) → (((𝐻 “ 𝑥) ⊆ 𝐵 ∧ (𝐻 “ 𝑥) ≠ ∅) → ∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅))) | 
| 26 | 17, 25 | syl 17 | 
. . . . . 6
⊢ (𝜑 → (∀𝑧((𝑧 ⊆ 𝐵 ∧ 𝑧 ≠ ∅) → ∃𝑤 ∈ 𝑧 (𝑧 ∩ (◡𝑆 “ {𝑤})) = ∅) → (((𝐻 “ 𝑥) ⊆ 𝐵 ∧ (𝐻 “ 𝑥) ≠ ∅) → ∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅))) | 
| 27 | 16, 26 | biimtrid 242 | 
. . . . 5
⊢ (𝜑 → (𝑆 Fr 𝐵 → (((𝐻 “ 𝑥) ⊆ 𝐵 ∧ (𝐻 “ 𝑥) ≠ ∅) → ∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅))) | 
| 28 | 15, 27 | syl5d 73 | 
. . . 4
⊢ (𝜑 → (𝑆 Fr 𝐵 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅))) | 
| 29 | 3 | adantr 480 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → 𝐻:𝐴⟶𝐵) | 
| 30 | 29 | ffund 6719 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → Fun 𝐻) | 
| 31 |   | simpl 482 | 
. . . . . . . . . 10
⊢ ((𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅) → 𝑤 ∈ (𝐻 “ 𝑥)) | 
| 32 |   | fvelima 6953 | 
. . . . . . . . . 10
⊢ ((Fun
𝐻 ∧ 𝑤 ∈ (𝐻 “ 𝑥)) → ∃𝑦 ∈ 𝑥 (𝐻‘𝑦) = 𝑤) | 
| 33 | 30, 31, 32 | syl2an 596 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐴) ∧ (𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅)) → ∃𝑦 ∈ 𝑥 (𝐻‘𝑦) = 𝑤) | 
| 34 |   | sneq 4616 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 = (𝐻‘𝑦) → {𝑤} = {(𝐻‘𝑦)}) | 
| 35 | 34 | eqcoms 2742 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐻‘𝑦) = 𝑤 → {𝑤} = {(𝐻‘𝑦)}) | 
| 36 | 35 | imaeq2d 6058 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐻‘𝑦) = 𝑤 → (◡𝑆 “ {𝑤}) = (◡𝑆 “ {(𝐻‘𝑦)})) | 
| 37 | 36 | ineq2d 4200 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐻‘𝑦) = 𝑤 → ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {(𝐻‘𝑦)}))) | 
| 38 | 37 | eqeq1d 2736 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐻‘𝑦) = 𝑤 → (((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅ ↔ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {(𝐻‘𝑦)})) = ∅)) | 
| 39 | 38 | biimpd 229 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝐻‘𝑦) = 𝑤 → (((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅ → ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {(𝐻‘𝑦)})) = ∅)) | 
| 40 |   | ssel 3957 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ⊆ 𝐴 → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴)) | 
| 41 | 40 | imdistani 568 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥) → (𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐴)) | 
| 42 |   | relpmin 44906 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (((𝐻 “ 𝑥) ∩ (◡𝑆 “ {(𝐻‘𝑦)})) = ∅ → (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) | 
| 43 | 1, 41, 42 | syl2an 596 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥)) → (((𝐻 “ 𝑥) ∩ (◡𝑆 “ {(𝐻‘𝑦)})) = ∅ → (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) | 
| 44 | 39, 43 | sylan9r 508 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥)) ∧ (𝐻‘𝑦) = 𝑤) → (((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅ → (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) | 
| 45 | 44 | adantld 490 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥)) ∧ (𝐻‘𝑦) = 𝑤) → ((𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅) → (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) | 
| 46 | 45 | exp42 435 | 
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑥 ⊆ 𝐴 → (𝑦 ∈ 𝑥 → ((𝐻‘𝑦) = 𝑤 → ((𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅) → (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅))))) | 
| 47 | 46 | imp 406 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → (𝑦 ∈ 𝑥 → ((𝐻‘𝑦) = 𝑤 → ((𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅) → (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)))) | 
| 48 | 47 | com3l 89 | 
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝑥 → ((𝐻‘𝑦) = 𝑤 → ((𝜑 ∧ 𝑥 ⊆ 𝐴) → ((𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅) → (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)))) | 
| 49 | 48 | com4t 93 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → ((𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅) → (𝑦 ∈ 𝑥 → ((𝐻‘𝑦) = 𝑤 → (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)))) | 
| 50 | 49 | imp 406 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐴) ∧ (𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅)) → (𝑦 ∈ 𝑥 → ((𝐻‘𝑦) = 𝑤 → (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅))) | 
| 51 | 50 | reximdvai 3152 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐴) ∧ (𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅)) → (∃𝑦 ∈ 𝑥 (𝐻‘𝑦) = 𝑤 → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) | 
| 52 | 33, 51 | mpd 15 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐴) ∧ (𝑤 ∈ (𝐻 “ 𝑥) ∧ ((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅)) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅) | 
| 53 | 52 | rexlimdvaa 3143 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → (∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅ → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) | 
| 54 | 53 | ex 412 | 
. . . . . 6
⊢ (𝜑 → (𝑥 ⊆ 𝐴 → (∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅ → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅))) | 
| 55 | 54 | adantrd 491 | 
. . . . 5
⊢ (𝜑 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → (∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅ → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅))) | 
| 56 | 55 | a2d 29 | 
. . . 4
⊢ (𝜑 → (((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑤 ∈ (𝐻 “ 𝑥)((𝐻 “ 𝑥) ∩ (◡𝑆 “ {𝑤})) = ∅) → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅))) | 
| 57 | 28, 56 | syld 47 | 
. . 3
⊢ (𝜑 → (𝑆 Fr 𝐵 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅))) | 
| 58 | 57 | alrimdv 1928 | 
. 2
⊢ (𝜑 → (𝑆 Fr 𝐵 → ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅))) | 
| 59 |   | dffr3 6097 | 
. 2
⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) | 
| 60 | 58, 59 | imbitrrdi 252 | 
1
⊢ (𝜑 → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |