Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexcom | Structured version Visualization version GIF version |
Description: Commutation of restricted existential quantifiers. (Contributed by NM, 19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) (Proof shortened by BJ, 26-Aug-2023.) |
Ref | Expression |
---|---|
rexcom | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3069 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑)) | |
2 | 1 | rexbii 3177 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑)) |
3 | rexcom4 3179 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑) ↔ ∃𝑦∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑)) | |
4 | r19.42v 3276 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑)) | |
5 | 4 | exbii 1851 | . . 3 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑) ↔ ∃𝑦(𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑)) |
6 | df-rex 3069 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦(𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑)) | |
7 | 5, 6 | bitr4i 277 | . 2 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
8 | 2, 3, 7 | 3bitri 296 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∃wex 1783 ∈ wcel 2108 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-11 2156 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-rex 3069 |
This theorem is referenced by: rexcom13 3285 2reurex 3690 2reu1 3826 2reu4lem 4453 iuncom 4928 xpiundi 5648 brdom7disj 10218 addcompr 10708 mulcompr 10710 qmulz 12620 elpq 12644 caubnd2 14997 ello1mpt2 15159 o1lo1 15174 lo1add 15264 lo1mul 15265 rlimno1 15293 sqrt2irr 15886 bezoutlem2 16176 bezoutlem4 16178 pythagtriplem19 16462 lsmcom2 19175 efgrelexlemb 19271 lsmcomx 19372 pgpfac1lem2 19593 pgpfac1lem4 19596 regsep2 22435 ordthaus 22443 tgcmp 22460 txcmplem1 22700 xkococnlem 22718 regr1lem2 22799 dyadmax 24667 coeeu 25291 ostth 26692 axpasch 27212 axeuclidlem 27233 usgr2pth0 28034 elwwlks2 28232 elwspths2spth 28233 shscom 29582 mdsymlem4 30669 mdsymlem8 30673 ordtconnlem1 31776 cvmliftlem15 33160 fvineqsneq 35510 lshpsmreu 37050 islpln5 37476 islvol5 37520 paddcom 37754 mapdrvallem2 39586 hdmapglem7a 39868 fsuppind 40202 fourierdlem42 43580 2rexsb 44480 2rexrsb 44481 pgrpgt2nabl 45590 islindeps2 45712 isldepslvec2 45714 |
Copyright terms: Public domain | W3C validator |