| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexcom | Structured version Visualization version GIF version | ||
| Description: Commutation of restricted existential quantifiers. (Contributed by NM, 19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) (Proof shortened by BJ, 26-Aug-2023.) (Proof shortened by Wolf Lammen, 8-Dec-2024.) |
| Ref | Expression |
|---|---|
| rexcom | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralcom 3260 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 2 | ralnex2 3112 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | |
| 3 | ralnex2 3112 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) | |
| 4 | 1, 2, 3 | 3bitr3i 301 | . 2 ⊢ (¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
| 5 | 4 | con4bii 321 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wral 3047 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-11 2160 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-ral 3048 df-rex 3057 |
| This theorem is referenced by: rexcom13 3265 2reurex 3719 2reu1 3848 2reu4lem 4472 iuncom 4949 xpiundi 5687 brdom7disj 10419 addcompr 10909 mulcompr 10911 qmulz 12846 elpq 12870 caubnd2 15262 ello1mpt2 15426 o1lo1 15441 lo1add 15531 lo1mul 15532 rlimno1 15558 sqrt2irr 16155 bezoutlem2 16448 bezoutlem4 16450 pythagtriplem19 16742 lsmcom2 19565 efgrelexlemb 19660 lsmcomx 19766 pgpfac1lem2 19987 pgpfac1lem4 19990 regsep2 23289 ordthaus 23297 tgcmp 23314 txcmplem1 23554 xkococnlem 23572 regr1lem2 23653 dyadmax 25524 coeeu 26155 ostth 27575 mulscom 28076 znegscl 28314 zs12negscl 28386 zs12ge0 28391 axpasch 28917 axeuclidlem 28938 usgr2pth0 29741 elwwlks2 29942 elwspths2spth 29943 shscom 31294 mdsymlem4 32381 mdsymlem8 32385 ordtconnlem1 33932 onvf1odlem1 35135 cvmliftlem15 35330 fvineqsneq 37445 lshpsmreu 39147 islpln5 39573 islvol5 39617 paddcom 39851 mapdrvallem2 41683 hdmapglem7a 41965 remexz 42136 hashnexinjle 42161 fimgmcyclem 42565 fsuppind 42622 fourierdlem42 46186 2rexsb 47131 2rexrsb 47132 pgrpgt2nabl 48396 islindeps2 48514 isldepslvec2 48516 |
| Copyright terms: Public domain | W3C validator |