![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexcom | Structured version Visualization version GIF version |
Description: Commutation of restricted existential quantifiers. (Contributed by NM, 19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) (Proof shortened by BJ, 26-Aug-2023.) (Proof shortened by Wolf Lammen, 8-Dec-2024.) |
Ref | Expression |
---|---|
rexcom | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralcom 3284 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
2 | ralnex2 3131 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | |
3 | ralnex2 3131 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) | |
4 | 1, 2, 3 | 3bitr3i 300 | . 2 ⊢ (¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
5 | 4 | con4bii 320 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wral 3059 ∃wrex 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-11 2152 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-ral 3060 df-rex 3069 |
This theorem is referenced by: rexcom13 3291 2reurex 3755 2reu1 3890 2reu4lem 4524 iuncom 5003 xpiundi 5745 brdom7disj 10528 addcompr 11018 mulcompr 11020 qmulz 12939 elpq 12963 caubnd2 15308 ello1mpt2 15470 o1lo1 15485 lo1add 15575 lo1mul 15576 rlimno1 15604 sqrt2irr 16196 bezoutlem2 16486 bezoutlem4 16488 pythagtriplem19 16770 lsmcom2 19564 efgrelexlemb 19659 lsmcomx 19765 pgpfac1lem2 19986 pgpfac1lem4 19989 regsep2 23100 ordthaus 23108 tgcmp 23125 txcmplem1 23365 xkococnlem 23383 regr1lem2 23464 dyadmax 25347 coeeu 25974 ostth 27378 mulscom 27834 axpasch 28466 axeuclidlem 28487 usgr2pth0 29289 elwwlks2 29487 elwspths2spth 29488 shscom 30839 mdsymlem4 31926 mdsymlem8 31930 ordtconnlem1 33202 cvmliftlem15 34587 fvineqsneq 36596 lshpsmreu 38282 islpln5 38709 islvol5 38753 paddcom 38987 mapdrvallem2 40819 hdmapglem7a 41101 fsuppind 41464 fourierdlem42 45163 2rexsb 46107 2rexrsb 46108 pgrpgt2nabl 47130 islindeps2 47251 isldepslvec2 47253 |
Copyright terms: Public domain | W3C validator |