| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexcom | Structured version Visualization version GIF version | ||
| Description: Commutation of restricted existential quantifiers. (Contributed by NM, 19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) (Proof shortened by BJ, 26-Aug-2023.) (Proof shortened by Wolf Lammen, 8-Dec-2024.) |
| Ref | Expression |
|---|---|
| rexcom | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralcom 3261 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 2 | ralnex2 3113 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | |
| 3 | ralnex2 3113 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) | |
| 4 | 1, 2, 3 | 3bitr3i 301 | . 2 ⊢ (¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
| 5 | 4 | con4bii 321 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wral 3048 ∃wrex 3057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-11 2162 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-ral 3049 df-rex 3058 |
| This theorem is referenced by: rexcom13 3266 2reurex 3715 2reu1 3844 2reu4lem 4471 iuncom 4949 xpiundi 5690 brdom7disj 10429 addcompr 10919 mulcompr 10921 qmulz 12851 elpq 12875 caubnd2 15267 ello1mpt2 15431 o1lo1 15446 lo1add 15536 lo1mul 15537 rlimno1 15563 sqrt2irr 16160 bezoutlem2 16453 bezoutlem4 16455 pythagtriplem19 16747 lsmcom2 19569 efgrelexlemb 19664 lsmcomx 19770 pgpfac1lem2 19991 pgpfac1lem4 19994 regsep2 23292 ordthaus 23300 tgcmp 23317 txcmplem1 23557 xkococnlem 23575 regr1lem2 23656 dyadmax 25527 coeeu 26158 ostth 27578 mulscom 28079 znegscl 28317 zs12negscl 28389 zs12ge0 28394 axpasch 28921 axeuclidlem 28942 usgr2pth0 29745 elwwlks2 29949 elwspths2spth 29950 shscom 31301 mdsymlem4 32388 mdsymlem8 32392 ordtconnlem1 33958 onvf1odlem1 35168 cvmliftlem15 35363 fvineqsneq 37477 lshpsmreu 39228 islpln5 39654 islvol5 39698 paddcom 39932 mapdrvallem2 41764 hdmapglem7a 42046 remexz 42217 hashnexinjle 42242 fimgmcyclem 42651 fsuppind 42708 fourierdlem42 46271 2rexsb 47225 2rexrsb 47226 pgrpgt2nabl 48490 islindeps2 48608 isldepslvec2 48610 |
| Copyright terms: Public domain | W3C validator |