![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexcom | Structured version Visualization version GIF version |
Description: Commutation of restricted existential quantifiers. (Contributed by NM, 19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) (Proof shortened by BJ, 26-Aug-2023.) (Proof shortened by Wolf Lammen, 8-Dec-2024.) |
Ref | Expression |
---|---|
rexcom | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralcom 3295 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
2 | ralnex2 3139 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | |
3 | ralnex2 3139 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) | |
4 | 1, 2, 3 | 3bitr3i 301 | . 2 ⊢ (¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
5 | 4 | con4bii 321 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∀wral 3067 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-11 2158 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-ral 3068 df-rex 3077 |
This theorem is referenced by: rexcom13 3302 2reurex 3782 2reu1 3919 2reu4lem 4545 iuncom 5022 xpiundi 5770 brdom7disj 10600 addcompr 11090 mulcompr 11092 qmulz 13016 elpq 13040 caubnd2 15406 ello1mpt2 15568 o1lo1 15583 lo1add 15673 lo1mul 15674 rlimno1 15702 sqrt2irr 16297 bezoutlem2 16587 bezoutlem4 16589 pythagtriplem19 16880 lsmcom2 19697 efgrelexlemb 19792 lsmcomx 19898 pgpfac1lem2 20119 pgpfac1lem4 20122 regsep2 23405 ordthaus 23413 tgcmp 23430 txcmplem1 23670 xkococnlem 23688 regr1lem2 23769 dyadmax 25652 coeeu 26284 ostth 27701 mulscom 28183 znegscl 28396 axpasch 28974 axeuclidlem 28995 usgr2pth0 29801 elwwlks2 29999 elwspths2spth 30000 shscom 31351 mdsymlem4 32438 mdsymlem8 32442 ordtconnlem1 33870 cvmliftlem15 35266 fvineqsneq 37378 lshpsmreu 39065 islpln5 39492 islvol5 39536 paddcom 39770 mapdrvallem2 41602 hdmapglem7a 41884 remexz 42061 hashnexinjle 42086 fimgmcyclem 42488 fsuppind 42545 fourierdlem42 46070 2rexsb 47016 2rexrsb 47017 pgrpgt2nabl 48091 islindeps2 48212 isldepslvec2 48214 |
Copyright terms: Public domain | W3C validator |