![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexcom | Structured version Visualization version GIF version |
Description: Commutation of restricted existential quantifiers. (Contributed by NM, 19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) (Proof shortened by BJ, 26-Aug-2023.) (Proof shortened by Wolf Lammen, 8-Dec-2024.) |
Ref | Expression |
---|---|
rexcom | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralcom 3286 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
2 | ralnex2 3133 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | |
3 | ralnex2 3133 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) | |
4 | 1, 2, 3 | 3bitr3i 300 | . 2 ⊢ (¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
5 | 4 | con4bii 320 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wral 3061 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-11 2154 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-ral 3062 df-rex 3071 |
This theorem is referenced by: rexcom13 3293 2reurex 3756 2reu1 3891 2reu4lem 4525 iuncom 5004 xpiundi 5746 brdom7disj 10525 addcompr 11015 mulcompr 11017 qmulz 12934 elpq 12958 caubnd2 15303 ello1mpt2 15465 o1lo1 15480 lo1add 15570 lo1mul 15571 rlimno1 15599 sqrt2irr 16191 bezoutlem2 16481 bezoutlem4 16483 pythagtriplem19 16765 lsmcom2 19522 efgrelexlemb 19617 lsmcomx 19723 pgpfac1lem2 19944 pgpfac1lem4 19947 regsep2 22879 ordthaus 22887 tgcmp 22904 txcmplem1 23144 xkococnlem 23162 regr1lem2 23243 dyadmax 25114 coeeu 25738 ostth 27139 mulscom 27592 axpasch 28196 axeuclidlem 28217 usgr2pth0 29019 elwwlks2 29217 elwspths2spth 29218 shscom 30567 mdsymlem4 31654 mdsymlem8 31658 ordtconnlem1 32899 cvmliftlem15 34284 fvineqsneq 36288 lshpsmreu 37974 islpln5 38401 islvol5 38445 paddcom 38679 mapdrvallem2 40511 hdmapglem7a 40793 fsuppind 41164 fourierdlem42 44855 2rexsb 45799 2rexrsb 45800 pgrpgt2nabl 47032 islindeps2 47154 isldepslvec2 47156 |
Copyright terms: Public domain | W3C validator |