![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexcom | Structured version Visualization version GIF version |
Description: Commutation of restricted existential quantifiers. (Contributed by NM, 19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) (Proof shortened by BJ, 26-Aug-2023.) (Proof shortened by Wolf Lammen, 8-Dec-2024.) |
Ref | Expression |
---|---|
rexcom | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralcom 3286 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
2 | ralnex2 3130 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | |
3 | ralnex2 3130 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) | |
4 | 1, 2, 3 | 3bitr3i 301 | . 2 ⊢ (¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
5 | 4 | con4bii 321 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∀wral 3058 ∃wrex 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-11 2154 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-ral 3059 df-rex 3068 |
This theorem is referenced by: rexcom13 3293 2reurex 3768 2reu1 3905 2reu4lem 4527 iuncom 5003 xpiundi 5758 brdom7disj 10568 addcompr 11058 mulcompr 11060 qmulz 12990 elpq 13014 caubnd2 15392 ello1mpt2 15554 o1lo1 15569 lo1add 15659 lo1mul 15660 rlimno1 15686 sqrt2irr 16281 bezoutlem2 16573 bezoutlem4 16575 pythagtriplem19 16866 lsmcom2 19687 efgrelexlemb 19782 lsmcomx 19888 pgpfac1lem2 20109 pgpfac1lem4 20112 regsep2 23399 ordthaus 23407 tgcmp 23424 txcmplem1 23664 xkococnlem 23682 regr1lem2 23763 dyadmax 25646 coeeu 26278 ostth 27697 mulscom 28179 znegscl 28392 axpasch 28970 axeuclidlem 28991 usgr2pth0 29797 elwwlks2 29995 elwspths2spth 29996 shscom 31347 mdsymlem4 32434 mdsymlem8 32438 ordtconnlem1 33884 cvmliftlem15 35282 fvineqsneq 37394 lshpsmreu 39090 islpln5 39517 islvol5 39561 paddcom 39795 mapdrvallem2 41627 hdmapglem7a 41909 remexz 42085 hashnexinjle 42110 fimgmcyclem 42519 fsuppind 42576 fourierdlem42 46104 2rexsb 47050 2rexrsb 47051 pgrpgt2nabl 48210 islindeps2 48328 isldepslvec2 48330 |
Copyright terms: Public domain | W3C validator |