Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexcom | Structured version Visualization version GIF version |
Description: Commutation of restricted existential quantifiers. (Contributed by NM, 19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) (Proof shortened by BJ, 26-Aug-2023.) (Proof shortened by Wolf Lammen, 8-Dec-2024.) |
Ref | Expression |
---|---|
rexcom | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralcom 3166 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
2 | ralnex2 3189 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | |
3 | ralnex2 3189 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) | |
4 | 1, 2, 3 | 3bitr3i 301 | . 2 ⊢ (¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
5 | 4 | con4bii 321 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wral 3064 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-11 2154 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-ral 3069 df-rex 3070 |
This theorem is referenced by: rexcom13 3287 2reurex 3695 2reu1 3830 2reu4lem 4456 iuncom 4931 xpiundi 5657 brdom7disj 10287 addcompr 10777 mulcompr 10779 qmulz 12691 elpq 12715 caubnd2 15069 ello1mpt2 15231 o1lo1 15246 lo1add 15336 lo1mul 15337 rlimno1 15365 sqrt2irr 15958 bezoutlem2 16248 bezoutlem4 16250 pythagtriplem19 16534 lsmcom2 19260 efgrelexlemb 19356 lsmcomx 19457 pgpfac1lem2 19678 pgpfac1lem4 19681 regsep2 22527 ordthaus 22535 tgcmp 22552 txcmplem1 22792 xkococnlem 22810 regr1lem2 22891 dyadmax 24762 coeeu 25386 ostth 26787 axpasch 27309 axeuclidlem 27330 usgr2pth0 28133 elwwlks2 28331 elwspths2spth 28332 shscom 29681 mdsymlem4 30768 mdsymlem8 30772 ordtconnlem1 31874 cvmliftlem15 33260 fvineqsneq 35583 lshpsmreu 37123 islpln5 37549 islvol5 37593 paddcom 37827 mapdrvallem2 39659 hdmapglem7a 39941 fsuppind 40279 fourierdlem42 43690 2rexsb 44593 2rexrsb 44594 pgrpgt2nabl 45702 islindeps2 45824 isldepslvec2 45826 |
Copyright terms: Public domain | W3C validator |