| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexcom | Structured version Visualization version GIF version | ||
| Description: Commutation of restricted existential quantifiers. (Contributed by NM, 19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) (Proof shortened by BJ, 26-Aug-2023.) (Proof shortened by Wolf Lammen, 8-Dec-2024.) |
| Ref | Expression |
|---|---|
| rexcom | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralcom 3257 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 2 | ralnex2 3109 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | |
| 3 | ralnex2 3109 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) | |
| 4 | 1, 2, 3 | 3bitr3i 301 | . 2 ⊢ (¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
| 5 | 4 | con4bii 321 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-11 2158 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: rexcom13 3263 2reurex 3722 2reu1 3851 2reu4lem 4475 iuncom 4952 xpiundi 5694 brdom7disj 10444 addcompr 10934 mulcompr 10936 qmulz 12870 elpq 12894 caubnd2 15283 ello1mpt2 15447 o1lo1 15462 lo1add 15552 lo1mul 15553 rlimno1 15579 sqrt2irr 16176 bezoutlem2 16469 bezoutlem4 16471 pythagtriplem19 16763 lsmcom2 19552 efgrelexlemb 19647 lsmcomx 19753 pgpfac1lem2 19974 pgpfac1lem4 19977 regsep2 23279 ordthaus 23287 tgcmp 23304 txcmplem1 23544 xkococnlem 23562 regr1lem2 23643 dyadmax 25515 coeeu 26146 ostth 27566 mulscom 28065 znegscl 28303 zs12negscl 28373 zs12ge0 28378 axpasch 28904 axeuclidlem 28925 usgr2pth0 29728 elwwlks2 29929 elwspths2spth 29930 shscom 31281 mdsymlem4 32368 mdsymlem8 32372 ordtconnlem1 33890 onvf1odlem1 35075 cvmliftlem15 35270 fvineqsneq 37385 lshpsmreu 39087 islpln5 39514 islvol5 39558 paddcom 39792 mapdrvallem2 41624 hdmapglem7a 41906 remexz 42077 hashnexinjle 42102 fimgmcyclem 42506 fsuppind 42563 fourierdlem42 46131 2rexsb 47086 2rexrsb 47087 pgrpgt2nabl 48351 islindeps2 48469 isldepslvec2 48471 |
| Copyright terms: Public domain | W3C validator |