| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexcom | Structured version Visualization version GIF version | ||
| Description: Commutation of restricted existential quantifiers. (Contributed by NM, 19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) (Proof shortened by BJ, 26-Aug-2023.) (Proof shortened by Wolf Lammen, 8-Dec-2024.) |
| Ref | Expression |
|---|---|
| rexcom | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralcom 3266 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 2 | ralnex2 3114 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | |
| 3 | ralnex2 3114 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) | |
| 4 | 1, 2, 3 | 3bitr3i 301 | . 2 ⊢ (¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
| 5 | 4 | con4bii 321 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wral 3045 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-11 2158 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3046 df-rex 3055 |
| This theorem is referenced by: rexcom13 3273 2reurex 3734 2reu1 3863 2reu4lem 4488 iuncom 4966 xpiundi 5712 brdom7disj 10491 addcompr 10981 mulcompr 10983 qmulz 12917 elpq 12941 caubnd2 15331 ello1mpt2 15495 o1lo1 15510 lo1add 15600 lo1mul 15601 rlimno1 15627 sqrt2irr 16224 bezoutlem2 16517 bezoutlem4 16519 pythagtriplem19 16811 lsmcom2 19592 efgrelexlemb 19687 lsmcomx 19793 pgpfac1lem2 20014 pgpfac1lem4 20017 regsep2 23270 ordthaus 23278 tgcmp 23295 txcmplem1 23535 xkococnlem 23553 regr1lem2 23634 dyadmax 25506 coeeu 26137 ostth 27557 mulscom 28049 znegscl 28287 zs12negscl 28347 zs12ge0 28349 axpasch 28875 axeuclidlem 28896 usgr2pth0 29702 elwwlks2 29903 elwspths2spth 29904 shscom 31255 mdsymlem4 32342 mdsymlem8 32346 ordtconnlem1 33921 onvf1odlem1 35097 cvmliftlem15 35292 fvineqsneq 37407 lshpsmreu 39109 islpln5 39536 islvol5 39580 paddcom 39814 mapdrvallem2 41646 hdmapglem7a 41928 remexz 42099 hashnexinjle 42124 fimgmcyclem 42528 fsuppind 42585 fourierdlem42 46154 2rexsb 47106 2rexrsb 47107 pgrpgt2nabl 48358 islindeps2 48476 isldepslvec2 48478 |
| Copyright terms: Public domain | W3C validator |