| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexcom | Structured version Visualization version GIF version | ||
| Description: Commutation of restricted existential quantifiers. (Contributed by NM, 19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) (Proof shortened by BJ, 26-Aug-2023.) (Proof shortened by Wolf Lammen, 8-Dec-2024.) |
| Ref | Expression |
|---|---|
| rexcom | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralcom 3270 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 2 | ralnex2 3120 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | |
| 3 | ralnex2 3120 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) | |
| 4 | 1, 2, 3 | 3bitr3i 301 | . 2 ⊢ (¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
| 5 | 4 | con4bii 321 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wral 3051 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-11 2157 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3052 df-rex 3061 |
| This theorem is referenced by: rexcom13 3277 2reurex 3743 2reu1 3872 2reu4lem 4497 iuncom 4975 xpiundi 5725 brdom7disj 10545 addcompr 11035 mulcompr 11037 qmulz 12967 elpq 12991 caubnd2 15376 ello1mpt2 15538 o1lo1 15553 lo1add 15643 lo1mul 15644 rlimno1 15670 sqrt2irr 16267 bezoutlem2 16559 bezoutlem4 16561 pythagtriplem19 16853 lsmcom2 19636 efgrelexlemb 19731 lsmcomx 19837 pgpfac1lem2 20058 pgpfac1lem4 20061 regsep2 23314 ordthaus 23322 tgcmp 23339 txcmplem1 23579 xkococnlem 23597 regr1lem2 23678 dyadmax 25551 coeeu 26182 ostth 27602 mulscom 28094 znegscl 28332 zs12negscl 28392 zs12ge0 28394 axpasch 28920 axeuclidlem 28941 usgr2pth0 29747 elwwlks2 29948 elwspths2spth 29949 shscom 31300 mdsymlem4 32387 mdsymlem8 32391 ordtconnlem1 33955 cvmliftlem15 35320 fvineqsneq 37430 lshpsmreu 39127 islpln5 39554 islvol5 39598 paddcom 39832 mapdrvallem2 41664 hdmapglem7a 41946 remexz 42117 hashnexinjle 42142 fimgmcyclem 42556 fsuppind 42613 fourierdlem42 46178 2rexsb 47130 2rexrsb 47131 pgrpgt2nabl 48341 islindeps2 48459 isldepslvec2 48461 |
| Copyright terms: Public domain | W3C validator |