| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexcom | Structured version Visualization version GIF version | ||
| Description: Commutation of restricted existential quantifiers. (Contributed by NM, 19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) (Proof shortened by BJ, 26-Aug-2023.) (Proof shortened by Wolf Lammen, 8-Dec-2024.) |
| Ref | Expression |
|---|---|
| rexcom | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralcom 3265 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 2 | ralnex2 3113 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | |
| 3 | ralnex2 3113 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) | |
| 4 | 1, 2, 3 | 3bitr3i 301 | . 2 ⊢ (¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
| 5 | 4 | con4bii 321 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-11 2158 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: rexcom13 3271 2reurex 3731 2reu1 3860 2reu4lem 4485 iuncom 4963 xpiundi 5709 brdom7disj 10484 addcompr 10974 mulcompr 10976 qmulz 12910 elpq 12934 caubnd2 15324 ello1mpt2 15488 o1lo1 15503 lo1add 15593 lo1mul 15594 rlimno1 15620 sqrt2irr 16217 bezoutlem2 16510 bezoutlem4 16512 pythagtriplem19 16804 lsmcom2 19585 efgrelexlemb 19680 lsmcomx 19786 pgpfac1lem2 20007 pgpfac1lem4 20010 regsep2 23263 ordthaus 23271 tgcmp 23288 txcmplem1 23528 xkococnlem 23546 regr1lem2 23627 dyadmax 25499 coeeu 26130 ostth 27550 mulscom 28042 znegscl 28280 zs12negscl 28340 zs12ge0 28342 axpasch 28868 axeuclidlem 28889 usgr2pth0 29695 elwwlks2 29896 elwspths2spth 29897 shscom 31248 mdsymlem4 32335 mdsymlem8 32339 ordtconnlem1 33914 onvf1odlem1 35090 cvmliftlem15 35285 fvineqsneq 37400 lshpsmreu 39102 islpln5 39529 islvol5 39573 paddcom 39807 mapdrvallem2 41639 hdmapglem7a 41921 remexz 42092 hashnexinjle 42117 fimgmcyclem 42521 fsuppind 42578 fourierdlem42 46147 2rexsb 47102 2rexrsb 47103 pgrpgt2nabl 48354 islindeps2 48472 isldepslvec2 48474 |
| Copyright terms: Public domain | W3C validator |