Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexrot4 | Structured version Visualization version GIF version |
Description: Rotate four restricted existential quantifiers twice. (Contributed by NM, 8-Apr-2015.) |
Ref | Expression |
---|---|
rexrot4 | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝐷 𝜑 ↔ ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝐷 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom13 3287 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝐷 𝜑 ↔ ∃𝑤 ∈ 𝐷 ∃𝑧 ∈ 𝐶 ∃𝑦 ∈ 𝐵 𝜑) | |
2 | 1 | rexbii 3179 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝐷 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑤 ∈ 𝐷 ∃𝑧 ∈ 𝐶 ∃𝑦 ∈ 𝐵 𝜑) |
3 | rexcom13 3287 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑤 ∈ 𝐷 ∃𝑧 ∈ 𝐶 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝐷 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | |
4 | 2, 3 | bitri 274 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝐷 𝜑 ↔ ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝐷 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wrex 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-11 2157 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-rex 3071 |
This theorem is referenced by: lsmspsn 20327 |
Copyright terms: Public domain | W3C validator |