MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexrot4 Structured version   Visualization version   GIF version

Theorem rexrot4 3289
Description: Rotate four restricted existential quantifiers twice. (Contributed by NM, 8-Apr-2015.)
Assertion
Ref Expression
rexrot4 (∃𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷 𝜑 ↔ ∃𝑧𝐶𝑤𝐷𝑥𝐴𝑦𝐵 𝜑)
Distinct variable groups:   𝑧,𝑤,𝐴   𝑤,𝐵,𝑧   𝑥,𝑤,𝐶   𝑦,𝑤,𝐶   𝑥,𝑧,𝐷   𝑦,𝑧,𝐷
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑧)   𝐷(𝑤)

Proof of Theorem rexrot4
StepHypRef Expression
1 rexcom13 3287 . . 3 (∃𝑦𝐵𝑧𝐶𝑤𝐷 𝜑 ↔ ∃𝑤𝐷𝑧𝐶𝑦𝐵 𝜑)
21rexbii 3179 . 2 (∃𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷 𝜑 ↔ ∃𝑥𝐴𝑤𝐷𝑧𝐶𝑦𝐵 𝜑)
3 rexcom13 3287 . 2 (∃𝑥𝐴𝑤𝐷𝑧𝐶𝑦𝐵 𝜑 ↔ ∃𝑧𝐶𝑤𝐷𝑥𝐴𝑦𝐵 𝜑)
42, 3bitri 274 1 (∃𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷 𝜑 ↔ ∃𝑧𝐶𝑤𝐷𝑥𝐴𝑦𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wrex 3066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-11 2157
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1786  df-rex 3071
This theorem is referenced by:  lsmspsn  20327
  Copyright terms: Public domain W3C validator