|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rexrot4 | Structured version Visualization version GIF version | ||
| Description: Rotate four restricted existential quantifiers twice. (Contributed by NM, 8-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| rexrot4 | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝐷 𝜑 ↔ ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝐷 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rexcom13 3295 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝐷 𝜑 ↔ ∃𝑤 ∈ 𝐷 ∃𝑧 ∈ 𝐶 ∃𝑦 ∈ 𝐵 𝜑) | |
| 2 | 1 | rexbii 3093 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝐷 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑤 ∈ 𝐷 ∃𝑧 ∈ 𝐶 ∃𝑦 ∈ 𝐵 𝜑) | 
| 3 | rexcom13 3295 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑤 ∈ 𝐷 ∃𝑧 ∈ 𝐶 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝐷 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝐷 𝜑 ↔ ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝐷 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∃wrex 3069 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-11 2156 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-ral 3061 df-rex 3070 | 
| This theorem is referenced by: lsmspsn 21084 | 
| Copyright terms: Public domain | W3C validator |