| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.23v | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.23v 1942. Version of r19.23 3243 with a disjoint variable condition. (Contributed by NM, 31-Aug-1999.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2020.) |
| Ref | Expression |
|---|---|
| r19.23v | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con34b 316 | . . 3 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) | |
| 2 | 1 | ralbii 3083 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑥 ∈ 𝐴 (¬ 𝜓 → ¬ 𝜑)) |
| 3 | r19.21v 3166 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (¬ 𝜓 → ¬ 𝜑) ↔ (¬ 𝜓 → ∀𝑥 ∈ 𝐴 ¬ 𝜑)) | |
| 4 | dfrex2 3064 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 5 | 4 | imbi1i 349 | . . 3 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 → 𝜓) ↔ (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 → 𝜓)) |
| 6 | con1b 358 | . . 3 ⊢ ((¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 → 𝜓) ↔ (¬ 𝜓 → ∀𝑥 ∈ 𝐴 ¬ 𝜑)) | |
| 7 | 5, 6 | bitr2i 276 | . 2 ⊢ ((¬ 𝜓 → ∀𝑥 ∈ 𝐴 ¬ 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
| 8 | 2, 3, 7 | 3bitri 297 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wral 3052 ∃wrex 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3053 df-rex 3062 |
| This theorem is referenced by: rexlimivOLD 3171 ceqsralv 3506 ralxpxfr2d 3630 uniiunlem 4067 2reu4lem 4502 dfiin2g 5013 iunss 5026 ralxfr2d 5385 ssrel2 5769 reliun 5800 idrefALT 6105 dfpo2 6290 funimass4 6948 fnssintima 7360 ralrnmpo 7551 imaeqalov 7651 ttrclss 9739 kmlem12 10181 fimaxre3 12193 gcdcllem1 16523 vdwmc2 17004 iunocv 21646 islindf4 21803 ovolgelb 25438 dyadmax 25556 itg2leub 25692 eqscut2 27775 addsprop 27940 addsuniflem 27965 negsprop 27998 mulsprop 28090 mulsuniflem 28109 mptelee 28879 nmoubi 30758 nmopub 31894 nmfnleub 31911 sigaclcu2 34156 untuni 35731 elintfv 35787 heibor1lem 37838 ispsubsp2 39770 pmapglbx 39793 neik0pk1imk0 44038 2reuimp0 47110 |
| Copyright terms: Public domain | W3C validator |