Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.23v Structured version   Visualization version   GIF version

Theorem r19.23v 3238
 Description: Restricted quantifier version of 19.23v 1943. Version of r19.23 3273 with a disjoint variable condition. (Contributed by NM, 31-Aug-1999.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2020.)
Assertion
Ref Expression
r19.23v (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem r19.23v
StepHypRef Expression
1 con34b 319 . . 3 ((𝜑𝜓) ↔ (¬ 𝜓 → ¬ 𝜑))
21ralbii 3133 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴𝜓 → ¬ 𝜑))
3 r19.21v 3142 . 2 (∀𝑥𝐴𝜓 → ¬ 𝜑) ↔ (¬ 𝜓 → ∀𝑥𝐴 ¬ 𝜑))
4 dfrex2 3202 . . . 4 (∃𝑥𝐴 𝜑 ↔ ¬ ∀𝑥𝐴 ¬ 𝜑)
54imbi1i 353 . . 3 ((∃𝑥𝐴 𝜑𝜓) ↔ (¬ ∀𝑥𝐴 ¬ 𝜑𝜓))
6 con1b 362 . . 3 ((¬ ∀𝑥𝐴 ¬ 𝜑𝜓) ↔ (¬ 𝜓 → ∀𝑥𝐴 ¬ 𝜑))
75, 6bitr2i 279 . 2 ((¬ 𝜓 → ∀𝑥𝐴 ¬ 𝜑) ↔ (∃𝑥𝐴 𝜑𝜓))
82, 3, 73bitri 300 1 (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209  ∀wral 3106  ∃wrex 3107 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911 This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-ral 3111  df-rex 3112 This theorem is referenced by:  rexlimiv  3239  ralxpxfr2d  3587  uniiunlem  4012  2reu4lem  4423  dfiin2g  4919  iunss  4932  ralxfr2d  5276  ssrel2  5623  reliun  5653  idrefALT  5940  funimass4  6705  ralrnmpo  7268  kmlem12  9572  fimaxre3  11575  gcdcllem1  15838  vdwmc2  16305  iunocv  20370  islindf4  20527  ovolgelb  24084  dyadmax  24202  itg2leub  24338  mptelee  26689  nmoubi  28555  nmopub  29691  nmfnleub  29708  sigaclcu2  31489  untuni  33048  dfpo2  33104  elintfv  33120  heibor1lem  35247  ispsubsp2  37042  pmapglbx  37065  neik0pk1imk0  40748  2reuimp0  43668
 Copyright terms: Public domain W3C validator