| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.23v | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.23v 1942. Version of r19.23 3234 with a disjoint variable condition. (Contributed by NM, 31-Aug-1999.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2020.) |
| Ref | Expression |
|---|---|
| r19.23v | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con34b 316 | . . 3 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) | |
| 2 | 1 | ralbii 3075 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑥 ∈ 𝐴 (¬ 𝜓 → ¬ 𝜑)) |
| 3 | r19.21v 3158 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (¬ 𝜓 → ¬ 𝜑) ↔ (¬ 𝜓 → ∀𝑥 ∈ 𝐴 ¬ 𝜑)) | |
| 4 | dfrex2 3056 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 5 | 4 | imbi1i 349 | . . 3 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 → 𝜓) ↔ (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 → 𝜓)) |
| 6 | con1b 358 | . . 3 ⊢ ((¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 → 𝜓) ↔ (¬ 𝜓 → ∀𝑥 ∈ 𝐴 ¬ 𝜑)) | |
| 7 | 5, 6 | bitr2i 276 | . 2 ⊢ ((¬ 𝜓 → ∀𝑥 ∈ 𝐴 ¬ 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
| 8 | 2, 3, 7 | 3bitri 297 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: rexlimivOLD 3163 ceqsralv 3488 ralxpxfr2d 3612 uniiunlem 4050 2reu4lem 4485 dfiin2g 4996 iunss 5009 ralxfr2d 5365 ssrel2 5748 reliun 5779 idrefALT 6084 dfpo2 6269 funimass4 6925 fnssintima 7337 ralrnmpo 7528 imaeqalov 7628 ttrclss 9673 kmlem12 10115 fimaxre3 12129 gcdcllem1 16469 vdwmc2 16950 iunocv 21590 islindf4 21747 ovolgelb 25381 dyadmax 25499 itg2leub 25635 eqscut2 27718 addsprop 27883 addsuniflem 27908 negsprop 27941 mulsprop 28033 mulsuniflem 28052 mptelee 28822 nmoubi 30701 nmopub 31837 nmfnleub 31854 sigaclcu2 34110 untuni 35696 elintfv 35752 heibor1lem 37803 ispsubsp2 39740 pmapglbx 39763 neik0pk1imk0 44036 2reuimp0 47112 |
| Copyright terms: Public domain | W3C validator |