MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.23v Structured version   Visualization version   GIF version

Theorem r19.23v 3159
Description: Restricted quantifier version of 19.23v 1943. Version of r19.23 3229 with a disjoint variable condition. (Contributed by NM, 31-Aug-1999.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2020.)
Assertion
Ref Expression
r19.23v (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem r19.23v
StepHypRef Expression
1 con34b 316 . . 3 ((𝜑𝜓) ↔ (¬ 𝜓 → ¬ 𝜑))
21ralbii 3078 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴𝜓 → ¬ 𝜑))
3 r19.21v 3157 . 2 (∀𝑥𝐴𝜓 → ¬ 𝜑) ↔ (¬ 𝜓 → ∀𝑥𝐴 ¬ 𝜑))
4 dfrex2 3059 . . . 4 (∃𝑥𝐴 𝜑 ↔ ¬ ∀𝑥𝐴 ¬ 𝜑)
54imbi1i 349 . . 3 ((∃𝑥𝐴 𝜑𝜓) ↔ (¬ ∀𝑥𝐴 ¬ 𝜑𝜓))
6 con1b 358 . . 3 ((¬ ∀𝑥𝐴 ¬ 𝜑𝜓) ↔ (¬ 𝜓 → ∀𝑥𝐴 ¬ 𝜑))
75, 6bitr2i 276 . 2 ((¬ 𝜓 → ∀𝑥𝐴 ¬ 𝜑) ↔ (∃𝑥𝐴 𝜑𝜓))
82, 3, 73bitri 297 1 (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wral 3047  wrex 3056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-ral 3048  df-rex 3057
This theorem is referenced by:  ceqsralv  3477  ralxpxfr2d  3596  uniiunlem  4034  2reu4lem  4469  dfiin2g  4979  iunss  4992  ralxfr2d  5346  ssrel2  5724  reliun  5755  idrefALT  6059  dfpo2  6243  funimass4  6886  fnssintima  7296  ralrnmpo  7485  imaeqalov  7585  ttrclss  9610  kmlem12  10053  fimaxre3  12068  gcdcllem1  16410  vdwmc2  16891  iunocv  21618  islindf4  21775  ovolgelb  25408  dyadmax  25526  itg2leub  25662  eqscut2  27747  addsprop  27919  addsuniflem  27944  negsprop  27977  mulsprop  28069  mulsuniflem  28088  mptelee  28873  nmoubi  30752  nmopub  31888  nmfnleub  31905  sigaclcu2  34133  untuni  35753  elintfv  35809  heibor1lem  37857  ispsubsp2  39793  pmapglbx  39816  neik0pk1imk0  44088  2reuimp0  47153
  Copyright terms: Public domain W3C validator