MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.23v Structured version   Visualization version   GIF version

Theorem r19.23v 3175
Description: Restricted quantifier version of 19.23v 1944. Version of r19.23 3235 with a disjoint variable condition. (Contributed by NM, 31-Aug-1999.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2020.)
Assertion
Ref Expression
r19.23v (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem r19.23v
StepHypRef Expression
1 con34b 315 . . 3 ((𝜑𝜓) ↔ (¬ 𝜓 → ¬ 𝜑))
21ralbii 3092 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴𝜓 → ¬ 𝜑))
3 r19.21v 3172 . 2 (∀𝑥𝐴𝜓 → ¬ 𝜑) ↔ (¬ 𝜓 → ∀𝑥𝐴 ¬ 𝜑))
4 dfrex2 3073 . . . 4 (∃𝑥𝐴 𝜑 ↔ ¬ ∀𝑥𝐴 ¬ 𝜑)
54imbi1i 349 . . 3 ((∃𝑥𝐴 𝜑𝜓) ↔ (¬ ∀𝑥𝐴 ¬ 𝜑𝜓))
6 con1b 358 . . 3 ((¬ ∀𝑥𝐴 ¬ 𝜑𝜓) ↔ (¬ 𝜓 → ∀𝑥𝐴 ¬ 𝜑))
75, 6bitr2i 275 . 2 ((¬ 𝜓 → ∀𝑥𝐴 ¬ 𝜑) ↔ (∃𝑥𝐴 𝜑𝜓))
82, 3, 73bitri 296 1 (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wral 3061  wrex 3070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1781  df-ral 3062  df-rex 3071
This theorem is referenced by:  rexlimivOLD  3177  ceqsralv  3477  ralxpxfr2d  3584  uniiunlem  4029  2reu4lem  4467  dfiin2g  4974  iunss  4987  ralxfr2d  5347  ssrel2  5714  reliun  5745  idrefALT  6038  dfpo2  6221  funimass4  6873  ralrnmpo  7453  ttrclss  9555  kmlem12  9996  fimaxre3  12000  gcdcllem1  16282  vdwmc2  16754  iunocv  20966  islindf4  21125  ovolgelb  24724  dyadmax  24842  itg2leub  24979  mptelee  27396  nmoubi  29266  nmopub  30402  nmfnleub  30419  sigaclcu2  32224  untuni  33785  fnssintima  33807  elintfv  33866  eqscut2  34070  heibor1lem  36044  ispsubsp2  37986  pmapglbx  38009  neik0pk1imk0  41896  2reuimp0  44876
  Copyright terms: Public domain W3C validator