| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.23v | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.23v 1942. Version of r19.23 3226 with a disjoint variable condition. (Contributed by NM, 31-Aug-1999.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2020.) |
| Ref | Expression |
|---|---|
| r19.23v | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con34b 316 | . . 3 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) | |
| 2 | 1 | ralbii 3075 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑥 ∈ 𝐴 (¬ 𝜓 → ¬ 𝜑)) |
| 3 | r19.21v 3154 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (¬ 𝜓 → ¬ 𝜑) ↔ (¬ 𝜓 → ∀𝑥 ∈ 𝐴 ¬ 𝜑)) | |
| 4 | dfrex2 3056 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 5 | 4 | imbi1i 349 | . . 3 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 → 𝜓) ↔ (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 → 𝜓)) |
| 6 | con1b 358 | . . 3 ⊢ ((¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 → 𝜓) ↔ (¬ 𝜓 → ∀𝑥 ∈ 𝐴 ¬ 𝜑)) | |
| 7 | 5, 6 | bitr2i 276 | . 2 ⊢ ((¬ 𝜓 → ∀𝑥 ∈ 𝐴 ¬ 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
| 8 | 2, 3, 7 | 3bitri 297 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: ceqsralv 3477 ralxpxfr2d 3601 uniiunlem 4038 2reu4lem 4473 dfiin2g 4981 iunss 4994 ralxfr2d 5349 ssrel2 5728 reliun 5759 idrefALT 6062 dfpo2 6244 funimass4 6887 fnssintima 7299 ralrnmpo 7488 imaeqalov 7588 ttrclss 9616 kmlem12 10056 fimaxre3 12071 gcdcllem1 16410 vdwmc2 16891 iunocv 21588 islindf4 21745 ovolgelb 25379 dyadmax 25497 itg2leub 25633 eqscut2 27717 addsprop 27888 addsuniflem 27913 negsprop 27946 mulsprop 28038 mulsuniflem 28057 mptelee 28840 nmoubi 30716 nmopub 31852 nmfnleub 31869 sigaclcu2 34087 untuni 35682 elintfv 35738 heibor1lem 37789 ispsubsp2 39725 pmapglbx 39748 neik0pk1imk0 44020 2reuimp0 47098 |
| Copyright terms: Public domain | W3C validator |