![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.23v | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.23v 1940. Version of r19.23 3254 with a disjoint variable condition. (Contributed by NM, 31-Aug-1999.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2020.) |
Ref | Expression |
---|---|
r19.23v | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con34b 316 | . . 3 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) | |
2 | 1 | ralbii 3091 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑥 ∈ 𝐴 (¬ 𝜓 → ¬ 𝜑)) |
3 | r19.21v 3178 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (¬ 𝜓 → ¬ 𝜑) ↔ (¬ 𝜓 → ∀𝑥 ∈ 𝐴 ¬ 𝜑)) | |
4 | dfrex2 3071 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
5 | 4 | imbi1i 349 | . . 3 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 → 𝜓) ↔ (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 → 𝜓)) |
6 | con1b 358 | . . 3 ⊢ ((¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 → 𝜓) ↔ (¬ 𝜓 → ∀𝑥 ∈ 𝐴 ¬ 𝜑)) | |
7 | 5, 6 | bitr2i 276 | . 2 ⊢ ((¬ 𝜓 → ∀𝑥 ∈ 𝐴 ¬ 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
8 | 2, 3, 7 | 3bitri 297 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wral 3059 ∃wrex 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-ral 3060 df-rex 3069 |
This theorem is referenced by: rexlimivOLD 3183 ceqsralv 3520 ralxpxfr2d 3646 uniiunlem 4097 2reu4lem 4528 dfiin2g 5037 iunss 5050 ralxfr2d 5416 ssrel2 5798 reliun 5829 idrefALT 6134 dfpo2 6318 funimass4 6973 fnssintima 7382 ralrnmpo 7572 imaeqalov 7672 ttrclss 9758 kmlem12 10200 fimaxre3 12212 gcdcllem1 16533 vdwmc2 17013 iunocv 21717 islindf4 21876 ovolgelb 25529 dyadmax 25647 itg2leub 25784 eqscut2 27866 addsprop 28024 addsuniflem 28049 negsprop 28082 mulsprop 28171 mulsuniflem 28190 mptelee 28925 nmoubi 30801 nmopub 31937 nmfnleub 31954 sigaclcu2 34101 untuni 35689 elintfv 35746 heibor1lem 37796 ispsubsp2 39729 pmapglbx 39752 neik0pk1imk0 44037 2reuimp0 47064 |
Copyright terms: Public domain | W3C validator |