![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.23v | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.23v 1941. Version of r19.23 3262 with a disjoint variable condition. (Contributed by NM, 31-Aug-1999.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2020.) |
Ref | Expression |
---|---|
r19.23v | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con34b 316 | . . 3 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) | |
2 | 1 | ralbii 3099 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑥 ∈ 𝐴 (¬ 𝜓 → ¬ 𝜑)) |
3 | r19.21v 3186 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (¬ 𝜓 → ¬ 𝜑) ↔ (¬ 𝜓 → ∀𝑥 ∈ 𝐴 ¬ 𝜑)) | |
4 | dfrex2 3079 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
5 | 4 | imbi1i 349 | . . 3 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 → 𝜓) ↔ (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 → 𝜓)) |
6 | con1b 358 | . . 3 ⊢ ((¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 → 𝜓) ↔ (¬ 𝜓 → ∀𝑥 ∈ 𝐴 ¬ 𝜑)) | |
7 | 5, 6 | bitr2i 276 | . 2 ⊢ ((¬ 𝜓 → ∀𝑥 ∈ 𝐴 ¬ 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
8 | 2, 3, 7 | 3bitri 297 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wral 3067 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-ral 3068 df-rex 3077 |
This theorem is referenced by: rexlimivOLD 3191 ceqsralv 3531 ralxpxfr2d 3659 uniiunlem 4110 2reu4lem 4545 dfiin2g 5055 iunss 5068 ralxfr2d 5428 ssrel2 5809 reliun 5840 idrefALT 6143 dfpo2 6327 funimass4 6986 fnssintima 7398 ralrnmpo 7589 imaeqalov 7689 ttrclss 9789 kmlem12 10231 fimaxre3 12241 gcdcllem1 16545 vdwmc2 17026 iunocv 21722 islindf4 21881 ovolgelb 25534 dyadmax 25652 itg2leub 25789 eqscut2 27869 addsprop 28027 addsuniflem 28052 negsprop 28085 mulsprop 28174 mulsuniflem 28193 mptelee 28928 nmoubi 30804 nmopub 31940 nmfnleub 31957 sigaclcu2 34084 untuni 35671 elintfv 35728 heibor1lem 37769 ispsubsp2 39703 pmapglbx 39726 neik0pk1imk0 44009 2reuimp0 47029 |
Copyright terms: Public domain | W3C validator |