MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.23v Structured version   Visualization version   GIF version

Theorem r19.23v 3169
Description: Restricted quantifier version of 19.23v 1942. Version of r19.23 3243 with a disjoint variable condition. (Contributed by NM, 31-Aug-1999.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2020.)
Assertion
Ref Expression
r19.23v (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem r19.23v
StepHypRef Expression
1 con34b 316 . . 3 ((𝜑𝜓) ↔ (¬ 𝜓 → ¬ 𝜑))
21ralbii 3083 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴𝜓 → ¬ 𝜑))
3 r19.21v 3166 . 2 (∀𝑥𝐴𝜓 → ¬ 𝜑) ↔ (¬ 𝜓 → ∀𝑥𝐴 ¬ 𝜑))
4 dfrex2 3064 . . . 4 (∃𝑥𝐴 𝜑 ↔ ¬ ∀𝑥𝐴 ¬ 𝜑)
54imbi1i 349 . . 3 ((∃𝑥𝐴 𝜑𝜓) ↔ (¬ ∀𝑥𝐴 ¬ 𝜑𝜓))
6 con1b 358 . . 3 ((¬ ∀𝑥𝐴 ¬ 𝜑𝜓) ↔ (¬ 𝜓 → ∀𝑥𝐴 ¬ 𝜑))
75, 6bitr2i 276 . 2 ((¬ 𝜓 → ∀𝑥𝐴 ¬ 𝜑) ↔ (∃𝑥𝐴 𝜑𝜓))
82, 3, 73bitri 297 1 (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wral 3052  wrex 3061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-ral 3053  df-rex 3062
This theorem is referenced by:  rexlimivOLD  3171  ceqsralv  3506  ralxpxfr2d  3630  uniiunlem  4067  2reu4lem  4502  dfiin2g  5013  iunss  5026  ralxfr2d  5385  ssrel2  5769  reliun  5800  idrefALT  6105  dfpo2  6290  funimass4  6948  fnssintima  7360  ralrnmpo  7551  imaeqalov  7651  ttrclss  9739  kmlem12  10181  fimaxre3  12193  gcdcllem1  16523  vdwmc2  17004  iunocv  21646  islindf4  21803  ovolgelb  25438  dyadmax  25556  itg2leub  25692  eqscut2  27775  addsprop  27940  addsuniflem  27965  negsprop  27998  mulsprop  28090  mulsuniflem  28109  mptelee  28879  nmoubi  30758  nmopub  31894  nmfnleub  31911  sigaclcu2  34156  untuni  35731  elintfv  35787  heibor1lem  37838  ispsubsp2  39770  pmapglbx  39793  neik0pk1imk0  44038  2reuimp0  47110
  Copyright terms: Public domain W3C validator