| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.23v | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.23v 1943. Version of r19.23 3229 with a disjoint variable condition. (Contributed by NM, 31-Aug-1999.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2020.) |
| Ref | Expression |
|---|---|
| r19.23v | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con34b 316 | . . 3 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) | |
| 2 | 1 | ralbii 3078 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑥 ∈ 𝐴 (¬ 𝜓 → ¬ 𝜑)) |
| 3 | r19.21v 3157 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (¬ 𝜓 → ¬ 𝜑) ↔ (¬ 𝜓 → ∀𝑥 ∈ 𝐴 ¬ 𝜑)) | |
| 4 | dfrex2 3059 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 5 | 4 | imbi1i 349 | . . 3 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 → 𝜓) ↔ (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 → 𝜓)) |
| 6 | con1b 358 | . . 3 ⊢ ((¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 → 𝜓) ↔ (¬ 𝜓 → ∀𝑥 ∈ 𝐴 ¬ 𝜑)) | |
| 7 | 5, 6 | bitr2i 276 | . 2 ⊢ ((¬ 𝜓 → ∀𝑥 ∈ 𝐴 ¬ 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
| 8 | 2, 3, 7 | 3bitri 297 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wral 3047 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-ral 3048 df-rex 3057 |
| This theorem is referenced by: ceqsralv 3477 ralxpxfr2d 3596 uniiunlem 4034 2reu4lem 4469 dfiin2g 4979 iunss 4992 ralxfr2d 5346 ssrel2 5724 reliun 5755 idrefALT 6059 dfpo2 6243 funimass4 6886 fnssintima 7296 ralrnmpo 7485 imaeqalov 7585 ttrclss 9610 kmlem12 10053 fimaxre3 12068 gcdcllem1 16410 vdwmc2 16891 iunocv 21618 islindf4 21775 ovolgelb 25408 dyadmax 25526 itg2leub 25662 eqscut2 27747 addsprop 27919 addsuniflem 27944 negsprop 27977 mulsprop 28069 mulsuniflem 28088 mptelee 28873 nmoubi 30752 nmopub 31888 nmfnleub 31905 sigaclcu2 34133 untuni 35753 elintfv 35809 heibor1lem 37857 ispsubsp2 39793 pmapglbx 39816 neik0pk1imk0 44088 2reuimp0 47153 |
| Copyright terms: Public domain | W3C validator |