MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.23v Structured version   Visualization version   GIF version

Theorem r19.23v 3161
Description: Restricted quantifier version of 19.23v 1942. Version of r19.23 3234 with a disjoint variable condition. (Contributed by NM, 31-Aug-1999.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2020.)
Assertion
Ref Expression
r19.23v (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem r19.23v
StepHypRef Expression
1 con34b 316 . . 3 ((𝜑𝜓) ↔ (¬ 𝜓 → ¬ 𝜑))
21ralbii 3075 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴𝜓 → ¬ 𝜑))
3 r19.21v 3158 . 2 (∀𝑥𝐴𝜓 → ¬ 𝜑) ↔ (¬ 𝜓 → ∀𝑥𝐴 ¬ 𝜑))
4 dfrex2 3056 . . . 4 (∃𝑥𝐴 𝜑 ↔ ¬ ∀𝑥𝐴 ¬ 𝜑)
54imbi1i 349 . . 3 ((∃𝑥𝐴 𝜑𝜓) ↔ (¬ ∀𝑥𝐴 ¬ 𝜑𝜓))
6 con1b 358 . . 3 ((¬ ∀𝑥𝐴 ¬ 𝜑𝜓) ↔ (¬ 𝜓 → ∀𝑥𝐴 ¬ 𝜑))
75, 6bitr2i 276 . 2 ((¬ 𝜓 → ∀𝑥𝐴 ¬ 𝜑) ↔ (∃𝑥𝐴 𝜑𝜓))
82, 3, 73bitri 297 1 (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wral 3044  wrex 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-ral 3045  df-rex 3054
This theorem is referenced by:  rexlimivOLD  3163  ceqsralv  3488  ralxpxfr2d  3612  uniiunlem  4050  2reu4lem  4485  dfiin2g  4996  iunss  5009  ralxfr2d  5365  ssrel2  5748  reliun  5779  idrefALT  6084  dfpo2  6269  funimass4  6925  fnssintima  7337  ralrnmpo  7528  imaeqalov  7628  ttrclss  9673  kmlem12  10115  fimaxre3  12129  gcdcllem1  16469  vdwmc2  16950  iunocv  21590  islindf4  21747  ovolgelb  25381  dyadmax  25499  itg2leub  25635  eqscut2  27718  addsprop  27883  addsuniflem  27908  negsprop  27941  mulsprop  28033  mulsuniflem  28052  mptelee  28822  nmoubi  30701  nmopub  31837  nmfnleub  31854  sigaclcu2  34110  untuni  35696  elintfv  35752  heibor1lem  37803  ispsubsp2  39740  pmapglbx  39763  neik0pk1imk0  44036  2reuimp0  47112
  Copyright terms: Public domain W3C validator