MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.23v Structured version   Visualization version   GIF version

Theorem r19.23v 3156
Description: Restricted quantifier version of 19.23v 1942. Version of r19.23 3226 with a disjoint variable condition. (Contributed by NM, 31-Aug-1999.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2020.)
Assertion
Ref Expression
r19.23v (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem r19.23v
StepHypRef Expression
1 con34b 316 . . 3 ((𝜑𝜓) ↔ (¬ 𝜓 → ¬ 𝜑))
21ralbii 3075 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴𝜓 → ¬ 𝜑))
3 r19.21v 3154 . 2 (∀𝑥𝐴𝜓 → ¬ 𝜑) ↔ (¬ 𝜓 → ∀𝑥𝐴 ¬ 𝜑))
4 dfrex2 3056 . . . 4 (∃𝑥𝐴 𝜑 ↔ ¬ ∀𝑥𝐴 ¬ 𝜑)
54imbi1i 349 . . 3 ((∃𝑥𝐴 𝜑𝜓) ↔ (¬ ∀𝑥𝐴 ¬ 𝜑𝜓))
6 con1b 358 . . 3 ((¬ ∀𝑥𝐴 ¬ 𝜑𝜓) ↔ (¬ 𝜓 → ∀𝑥𝐴 ¬ 𝜑))
75, 6bitr2i 276 . 2 ((¬ 𝜓 → ∀𝑥𝐴 ¬ 𝜑) ↔ (∃𝑥𝐴 𝜑𝜓))
82, 3, 73bitri 297 1 (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wral 3044  wrex 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-ral 3045  df-rex 3054
This theorem is referenced by:  ceqsralv  3477  ralxpxfr2d  3601  uniiunlem  4038  2reu4lem  4473  dfiin2g  4981  iunss  4994  ralxfr2d  5349  ssrel2  5728  reliun  5759  idrefALT  6062  dfpo2  6244  funimass4  6887  fnssintima  7299  ralrnmpo  7488  imaeqalov  7588  ttrclss  9616  kmlem12  10056  fimaxre3  12071  gcdcllem1  16410  vdwmc2  16891  iunocv  21588  islindf4  21745  ovolgelb  25379  dyadmax  25497  itg2leub  25633  eqscut2  27717  addsprop  27888  addsuniflem  27913  negsprop  27946  mulsprop  28038  mulsuniflem  28057  mptelee  28840  nmoubi  30716  nmopub  31852  nmfnleub  31869  sigaclcu2  34087  untuni  35682  elintfv  35738  heibor1lem  37789  ispsubsp2  39725  pmapglbx  39748  neik0pk1imk0  44020  2reuimp0  47098
  Copyright terms: Public domain W3C validator