MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.23v Structured version   Visualization version   GIF version

Theorem r19.23v 3189
Description: Restricted quantifier version of 19.23v 1941. Version of r19.23 3262 with a disjoint variable condition. (Contributed by NM, 31-Aug-1999.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2020.)
Assertion
Ref Expression
r19.23v (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem r19.23v
StepHypRef Expression
1 con34b 316 . . 3 ((𝜑𝜓) ↔ (¬ 𝜓 → ¬ 𝜑))
21ralbii 3099 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴𝜓 → ¬ 𝜑))
3 r19.21v 3186 . 2 (∀𝑥𝐴𝜓 → ¬ 𝜑) ↔ (¬ 𝜓 → ∀𝑥𝐴 ¬ 𝜑))
4 dfrex2 3079 . . . 4 (∃𝑥𝐴 𝜑 ↔ ¬ ∀𝑥𝐴 ¬ 𝜑)
54imbi1i 349 . . 3 ((∃𝑥𝐴 𝜑𝜓) ↔ (¬ ∀𝑥𝐴 ¬ 𝜑𝜓))
6 con1b 358 . . 3 ((¬ ∀𝑥𝐴 ¬ 𝜑𝜓) ↔ (¬ 𝜓 → ∀𝑥𝐴 ¬ 𝜑))
75, 6bitr2i 276 . 2 ((¬ 𝜓 → ∀𝑥𝐴 ¬ 𝜑) ↔ (∃𝑥𝐴 𝜑𝜓))
82, 3, 73bitri 297 1 (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wral 3067  wrex 3076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-ral 3068  df-rex 3077
This theorem is referenced by:  rexlimivOLD  3191  ceqsralv  3531  ralxpxfr2d  3659  uniiunlem  4110  2reu4lem  4545  dfiin2g  5055  iunss  5068  ralxfr2d  5428  ssrel2  5809  reliun  5840  idrefALT  6143  dfpo2  6327  funimass4  6986  fnssintima  7398  ralrnmpo  7589  imaeqalov  7689  ttrclss  9789  kmlem12  10231  fimaxre3  12241  gcdcllem1  16545  vdwmc2  17026  iunocv  21722  islindf4  21881  ovolgelb  25534  dyadmax  25652  itg2leub  25789  eqscut2  27869  addsprop  28027  addsuniflem  28052  negsprop  28085  mulsprop  28174  mulsuniflem  28193  mptelee  28928  nmoubi  30804  nmopub  31940  nmfnleub  31957  sigaclcu2  34084  untuni  35671  elintfv  35728  heibor1lem  37769  ispsubsp2  39703  pmapglbx  39726  neik0pk1imk0  44009  2reuimp0  47029
  Copyright terms: Public domain W3C validator