| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.23v | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.23v 1942. Version of r19.23 3232 with a disjoint variable condition. (Contributed by NM, 31-Aug-1999.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2020.) |
| Ref | Expression |
|---|---|
| r19.23v | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con34b 316 | . . 3 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) | |
| 2 | 1 | ralbii 3075 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑥 ∈ 𝐴 (¬ 𝜓 → ¬ 𝜑)) |
| 3 | r19.21v 3158 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (¬ 𝜓 → ¬ 𝜑) ↔ (¬ 𝜓 → ∀𝑥 ∈ 𝐴 ¬ 𝜑)) | |
| 4 | dfrex2 3056 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 5 | 4 | imbi1i 349 | . . 3 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 → 𝜓) ↔ (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 → 𝜓)) |
| 6 | con1b 358 | . . 3 ⊢ ((¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 → 𝜓) ↔ (¬ 𝜓 → ∀𝑥 ∈ 𝐴 ¬ 𝜑)) | |
| 7 | 5, 6 | bitr2i 276 | . 2 ⊢ ((¬ 𝜓 → ∀𝑥 ∈ 𝐴 ¬ 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
| 8 | 2, 3, 7 | 3bitri 297 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: ceqsralv 3485 ralxpxfr2d 3609 uniiunlem 4046 2reu4lem 4481 dfiin2g 4991 iunss 5004 ralxfr2d 5360 ssrel2 5739 reliun 5770 idrefALT 6072 dfpo2 6257 funimass4 6907 fnssintima 7319 ralrnmpo 7508 imaeqalov 7608 ttrclss 9649 kmlem12 10091 fimaxre3 12105 gcdcllem1 16445 vdwmc2 16926 iunocv 21566 islindf4 21723 ovolgelb 25357 dyadmax 25475 itg2leub 25611 eqscut2 27694 addsprop 27859 addsuniflem 27884 negsprop 27917 mulsprop 28009 mulsuniflem 28028 mptelee 28798 nmoubi 30674 nmopub 31810 nmfnleub 31827 sigaclcu2 34083 untuni 35669 elintfv 35725 heibor1lem 37776 ispsubsp2 39713 pmapglbx 39736 neik0pk1imk0 44009 2reuimp0 47088 |
| Copyright terms: Public domain | W3C validator |