| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexlimivw | Structured version Visualization version GIF version | ||
| Description: Weaker version of rexlimiv 3126. (Contributed by FL, 19-Sep-2011.) (Proof shortened by Wolf Lammen, 23-Dec-2024.) |
| Ref | Expression |
|---|---|
| rexlimivw.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| rexlimivw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimivw.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
| 3 | 2 | rexlimiva 3125 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-rex 3057 |
| This theorem is referenced by: r19.36v 3160 r19.45v 3166 r19.44v 3167 sbcreu 3822 eliun 4943 reusv3i 5340 elrnmptg 5900 fvelrnb 6882 fvelimab 6894 iinpreima 7002 fmpt 7043 fliftfun 7246 elrnmpo 7482 ovelrn 7522 onuninsuci 7770 fiunlem 7874 releldm2 7975 poxp2 8073 poxp3 8080 orderseqlem 8087 tfrlem4 8298 naddunif 8608 iiner 8713 elixpsn 8861 isfi 8898 card2on 9440 brttrcl 9603 tz9.12lem1 9680 rankwflemb 9686 rankxpsuc 9775 scott0 9779 isnum2 9838 cardiun 9875 cardalephex 9981 dfac5lem4 10017 dfac5lem4OLD 10019 dfac12k 10039 cflim2 10154 cfss 10156 cfslb2n 10159 enfin2i 10212 fin23lem30 10233 itunitc 10312 axdc3lem2 10342 iundom2g 10431 pwcfsdom 10474 cfpwsdom 10475 tskr1om2 10659 genpelv 10891 prlem934 10924 suplem1pr 10943 supexpr 10945 supsrlem 11002 supsr 11003 fimaxre3 12068 iswrd 14422 caurcvgr 15581 caurcvg 15584 caucvg 15586 vdwapval 16885 restsspw 17335 mreunirn 17503 brssc 17721 arwhoma 17952 gexcl3 19499 dvdsr 20280 rhmdvdsr 20423 ellspsn 20936 lspprel 21028 ellspd 21739 iincld 22954 ssnei 23025 neindisj2 23038 neitr 23095 lecldbas 23134 tgcnp 23168 cncnp2 23196 lmmo 23295 is2ndc 23361 fbfinnfr 23756 fbunfip 23784 filunirn 23797 fbflim2 23892 flimcls 23900 hauspwpwf1 23902 flftg 23911 isfcls 23924 fclsbas 23936 isfcf 23949 ustfilxp 24128 ustbas 24142 restutop 24152 ucnima 24195 xmetunirn 24252 metss 24423 metrest 24439 restmetu 24485 qdensere 24684 elpi1 24972 lmmbr 25185 caun0 25208 nulmbl2 25464 itg2l 25657 aannenlem2 26264 taylfval 26293 ulmcl 26317 ulmpm 26319 ulmss 26333 elno 27584 nofun 27588 norn 27590 madeval2 27794 elmade 27812 tglnunirn 28526 ishpg 28737 edglnl 29121 uhgrwkspthlem1 29731 usgr2pth 29742 umgr2wlk 29927 elwwlks2ons3 29933 clwwlknun 30092 frgrncvvdeqlem3 30281 frgr2wwlkn0 30308 frgrreg 30374 hhcms 31183 hhsscms 31258 occllem 31283 occl 31284 chscllem2 31618 r19.29ffa 32450 rabfmpunirn 32635 kerunit 33290 tpr2rico 33925 gsumesum 34072 esumcst 34076 esumfsup 34083 esumpcvgval 34091 esumcvg 34099 sigaclcuni 34131 mbfmfun 34266 dya2icoseg2 34291 bnj66 34872 bnj517 34897 cusgr3cyclex 35180 rellysconn 35295 cvmliftlem15 35342 satffunlem2lem1 35448 r1peuqusdeg1 35687 dfrdg4 35993 brcolinear2 36100 brcolinear 36101 ellines 36194 poimirlem29 37697 volsupnfl 37713 unirep 37762 filbcmb 37788 islshpkrN 39167 ispointN 39789 pmapglbx 39816 rngunsnply 43210 elsetpreimafvbi 47430 cycldlenngric 47967 grtrif1o 47981 |
| Copyright terms: Public domain | W3C validator |