![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexlimivw | Structured version Visualization version GIF version |
Description: Weaker version of rexlimiv 3147. (Contributed by FL, 19-Sep-2011.) (Proof shortened by Wolf Lammen, 23-Dec-2024.) |
Ref | Expression |
---|---|
rexlimivw.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
rexlimivw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimivw.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | adantl 481 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
3 | 2 | rexlimiva 3146 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ∃wrex 3069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 df-rex 3070 |
This theorem is referenced by: r19.36v 3182 r19.45v 3191 r19.44v 3192 r19.29vvaOLD 3213 sbcreu 3870 eliun 5001 reusv3i 5402 elrnmptg 5958 fvelrnb 6952 fvelimab 6964 iinpreima 7070 fmpt 7111 fliftfun 7312 elrnmpo 7548 ovelrn 7587 onuninsuci 7833 fiunlem 7932 releldm2 8033 poxp2 8133 poxp3 8140 orderseqlem 8147 tfrlem4 8383 naddunif 8696 iiner 8787 elixpsn 8935 isfi 8976 card2on 9553 brttrcl 9712 tz9.12lem1 9786 rankwflemb 9792 rankxpsuc 9881 scott0 9885 isnum2 9944 cardiun 9981 cardalephex 10089 dfac5lem4 10125 dfac12k 10146 cflim2 10262 cfss 10264 cfslb2n 10267 enfin2i 10320 fin23lem30 10341 itunitc 10420 axdc3lem2 10450 iundom2g 10539 pwcfsdom 10582 cfpwsdom 10583 tskr1om2 10767 genpelv 10999 prlem934 11032 suplem1pr 11051 supexpr 11053 supsrlem 11110 supsr 11111 fimaxre3 12165 iswrd 14471 caurcvgr 15625 caurcvg 15628 caucvg 15630 vdwapval 16911 restsspw 17382 mreunirn 17550 brssc 17766 arwhoma 18000 gexcl3 19497 dvdsr 20254 rhmdvdsr 20400 lspsnel 20759 lspprel 20850 ellspd 21577 iincld 22764 ssnei 22835 neindisj2 22848 neitr 22905 lecldbas 22944 tgcnp 22978 cncnp2 23006 lmmo 23105 is2ndc 23171 fbfinnfr 23566 fbunfip 23594 filunirn 23607 fbflim2 23702 flimcls 23710 hauspwpwf1 23712 flftg 23721 isfcls 23734 fclsbas 23746 isfcf 23759 ustfilxp 23938 ustbas 23953 restutop 23963 ucnima 24007 xmetunirn 24064 metss 24238 metrest 24254 restmetu 24300 qdensere 24507 elpi1 24793 lmmbr 25007 caun0 25030 nulmbl2 25286 itg2l 25480 aannenlem2 26079 taylfval 26108 ulmcl 26130 ulmpm 26132 ulmss 26146 nofun 27389 norn 27391 madeval2 27586 elmade 27600 tglnunirn 28067 ishpg 28278 edglnl 28671 uhgrwkspthlem1 29278 usgr2pth 29289 umgr2wlk 29471 elwwlks2ons3 29477 clwwlknun 29633 frgrncvvdeqlem3 29822 frgr2wwlkn0 29849 frgrreg 29915 hhcms 30724 hhsscms 30799 occllem 30824 occl 30825 chscllem2 31159 r19.29ffa 31981 rabfmpunirn 32146 kerunit 32708 tpr2rico 33191 gsumesum 33356 esumcst 33360 esumfsup 33367 esumpcvgval 33375 esumcvg 33383 sigaclcuni 33415 mbfmfun 33550 dya2icoseg2 33576 bnj66 34170 bnj517 34195 cusgr3cyclex 34426 rellysconn 34541 cvmliftlem15 34588 satffunlem2lem1 34694 dfrdg4 35228 brcolinear2 35335 brcolinear 35336 ellines 35429 poimirlem29 36821 volsupnfl 36837 unirep 36886 filbcmb 36912 islshpkrN 38294 ispointN 38917 pmapglbx 38944 rngunsnply 42218 elsetpreimafvbi 46358 |
Copyright terms: Public domain | W3C validator |