| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexlimivw | Structured version Visualization version GIF version | ||
| Description: Weaker version of rexlimiv 3134. (Contributed by FL, 19-Sep-2011.) (Proof shortened by Wolf Lammen, 23-Dec-2024.) |
| Ref | Expression |
|---|---|
| rexlimivw.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| rexlimivw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimivw.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
| 3 | 2 | rexlimiva 3133 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3061 |
| This theorem is referenced by: r19.36v 3169 r19.45v 3178 r19.44v 3179 sbcreu 3851 eliun 4971 reusv3i 5374 elrnmptg 5941 fvelrnb 6938 fvelimab 6950 iinpreima 7058 fmpt 7099 fliftfun 7304 elrnmpo 7541 ovelrn 7581 onuninsuci 7833 fiunlem 7938 releldm2 8040 poxp2 8140 poxp3 8147 orderseqlem 8154 tfrlem4 8391 naddunif 8703 iiner 8801 elixpsn 8949 isfi 8988 card2on 9566 brttrcl 9725 tz9.12lem1 9799 rankwflemb 9805 rankxpsuc 9894 scott0 9898 isnum2 9957 cardiun 9994 cardalephex 10102 dfac5lem4 10138 dfac5lem4OLD 10140 dfac12k 10160 cflim2 10275 cfss 10277 cfslb2n 10280 enfin2i 10333 fin23lem30 10354 itunitc 10433 axdc3lem2 10463 iundom2g 10552 pwcfsdom 10595 cfpwsdom 10596 tskr1om2 10780 genpelv 11012 prlem934 11045 suplem1pr 11064 supexpr 11066 supsrlem 11123 supsr 11124 fimaxre3 12186 iswrd 14531 caurcvgr 15688 caurcvg 15691 caucvg 15693 vdwapval 16991 restsspw 17443 mreunirn 17611 brssc 17825 arwhoma 18056 gexcl3 19566 dvdsr 20320 rhmdvdsr 20466 ellspsn 20958 lspprel 21050 ellspd 21760 iincld 22975 ssnei 23046 neindisj2 23059 neitr 23116 lecldbas 23155 tgcnp 23189 cncnp2 23217 lmmo 23316 is2ndc 23382 fbfinnfr 23777 fbunfip 23805 filunirn 23818 fbflim2 23913 flimcls 23921 hauspwpwf1 23923 flftg 23932 isfcls 23945 fclsbas 23957 isfcf 23970 ustfilxp 24149 ustbas 24164 restutop 24174 ucnima 24217 xmetunirn 24274 metss 24445 metrest 24461 restmetu 24507 qdensere 24706 elpi1 24994 lmmbr 25208 caun0 25231 nulmbl2 25487 itg2l 25680 aannenlem2 26287 taylfval 26316 ulmcl 26340 ulmpm 26342 ulmss 26356 elno 27607 nofun 27611 norn 27613 madeval2 27809 elmade 27823 tglnunirn 28473 ishpg 28684 edglnl 29068 uhgrwkspthlem1 29681 usgr2pth 29692 umgr2wlk 29877 elwwlks2ons3 29883 clwwlknun 30039 frgrncvvdeqlem3 30228 frgr2wwlkn0 30255 frgrreg 30321 hhcms 31130 hhsscms 31205 occllem 31230 occl 31231 chscllem2 31565 r19.29ffa 32398 rabfmpunirn 32577 kerunit 33287 tpr2rico 33889 gsumesum 34036 esumcst 34040 esumfsup 34047 esumpcvgval 34055 esumcvg 34063 sigaclcuni 34095 mbfmfun 34230 dya2icoseg2 34256 bnj66 34837 bnj517 34862 cusgr3cyclex 35104 rellysconn 35219 cvmliftlem15 35266 satffunlem2lem1 35372 r1peuqusdeg1 35611 dfrdg4 35915 brcolinear2 36022 brcolinear 36023 ellines 36116 poimirlem29 37619 volsupnfl 37635 unirep 37684 filbcmb 37710 islshpkrN 39084 ispointN 39707 pmapglbx 39734 rngunsnply 43140 elsetpreimafvbi 47353 cycldlenngric 47889 grtrif1o 47902 |
| Copyright terms: Public domain | W3C validator |