| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexlimivw | Structured version Visualization version GIF version | ||
| Description: Weaker version of rexlimiv 3127. (Contributed by FL, 19-Sep-2011.) (Proof shortened by Wolf Lammen, 23-Dec-2024.) |
| Ref | Expression |
|---|---|
| rexlimivw.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| rexlimivw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimivw.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
| 3 | 2 | rexlimiva 3126 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: r19.36v 3161 r19.45v 3169 r19.44v 3170 sbcreu 3836 eliun 4955 reusv3i 5354 elrnmptg 5914 fvelrnb 6903 fvelimab 6915 iinpreima 7023 fmpt 7064 fliftfun 7269 elrnmpo 7505 ovelrn 7545 onuninsuci 7796 fiunlem 7900 releldm2 8001 poxp2 8099 poxp3 8106 orderseqlem 8113 tfrlem4 8324 naddunif 8634 iiner 8739 elixpsn 8887 isfi 8924 card2on 9483 brttrcl 9642 tz9.12lem1 9716 rankwflemb 9722 rankxpsuc 9811 scott0 9815 isnum2 9874 cardiun 9911 cardalephex 10019 dfac5lem4 10055 dfac5lem4OLD 10057 dfac12k 10077 cflim2 10192 cfss 10194 cfslb2n 10197 enfin2i 10250 fin23lem30 10271 itunitc 10350 axdc3lem2 10380 iundom2g 10469 pwcfsdom 10512 cfpwsdom 10513 tskr1om2 10697 genpelv 10929 prlem934 10962 suplem1pr 10981 supexpr 10983 supsrlem 11040 supsr 11041 fimaxre3 12105 iswrd 14456 caurcvgr 15616 caurcvg 15619 caucvg 15621 vdwapval 16920 restsspw 17370 mreunirn 17538 brssc 17752 arwhoma 17983 gexcl3 19493 dvdsr 20247 rhmdvdsr 20393 ellspsn 20885 lspprel 20977 ellspd 21687 iincld 22902 ssnei 22973 neindisj2 22986 neitr 23043 lecldbas 23082 tgcnp 23116 cncnp2 23144 lmmo 23243 is2ndc 23309 fbfinnfr 23704 fbunfip 23732 filunirn 23745 fbflim2 23840 flimcls 23848 hauspwpwf1 23850 flftg 23859 isfcls 23872 fclsbas 23884 isfcf 23897 ustfilxp 24076 ustbas 24091 restutop 24101 ucnima 24144 xmetunirn 24201 metss 24372 metrest 24388 restmetu 24434 qdensere 24633 elpi1 24921 lmmbr 25134 caun0 25157 nulmbl2 25413 itg2l 25606 aannenlem2 26213 taylfval 26242 ulmcl 26266 ulmpm 26268 ulmss 26282 elno 27533 nofun 27537 norn 27539 madeval2 27737 elmade 27755 tglnunirn 28451 ishpg 28662 edglnl 29046 uhgrwkspthlem1 29656 usgr2pth 29667 umgr2wlk 29852 elwwlks2ons3 29858 clwwlknun 30014 frgrncvvdeqlem3 30203 frgr2wwlkn0 30230 frgrreg 30296 hhcms 31105 hhsscms 31180 occllem 31205 occl 31206 chscllem2 31540 r19.29ffa 32373 rabfmpunirn 32550 kerunit 33270 tpr2rico 33875 gsumesum 34022 esumcst 34026 esumfsup 34033 esumpcvgval 34041 esumcvg 34049 sigaclcuni 34081 mbfmfun 34216 dya2icoseg2 34242 bnj66 34823 bnj517 34848 cusgr3cyclex 35096 rellysconn 35211 cvmliftlem15 35258 satffunlem2lem1 35364 r1peuqusdeg1 35603 dfrdg4 35912 brcolinear2 36019 brcolinear 36020 ellines 36113 poimirlem29 37616 volsupnfl 37632 unirep 37681 filbcmb 37707 islshpkrN 39086 ispointN 39709 pmapglbx 39736 rngunsnply 43131 elsetpreimafvbi 47365 cycldlenngric 47901 grtrif1o 47914 |
| Copyright terms: Public domain | W3C validator |