| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexlimivw | Structured version Visualization version GIF version | ||
| Description: Weaker version of rexlimiv 3127. (Contributed by FL, 19-Sep-2011.) (Proof shortened by Wolf Lammen, 23-Dec-2024.) |
| Ref | Expression |
|---|---|
| rexlimivw.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| rexlimivw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimivw.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
| 3 | 2 | rexlimiva 3126 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: r19.36v 3161 r19.45v 3169 r19.44v 3170 sbcreu 3836 eliun 4955 reusv3i 5354 elrnmptg 5914 fvelrnb 6903 fvelimab 6915 iinpreima 7023 fmpt 7064 fliftfun 7269 elrnmpo 7505 ovelrn 7545 onuninsuci 7796 fiunlem 7900 releldm2 8001 poxp2 8099 poxp3 8106 orderseqlem 8113 tfrlem4 8324 naddunif 8634 iiner 8739 elixpsn 8887 isfi 8924 card2on 9483 brttrcl 9642 tz9.12lem1 9716 rankwflemb 9722 rankxpsuc 9811 scott0 9815 isnum2 9874 cardiun 9911 cardalephex 10019 dfac5lem4 10055 dfac5lem4OLD 10057 dfac12k 10077 cflim2 10192 cfss 10194 cfslb2n 10197 enfin2i 10250 fin23lem30 10271 itunitc 10350 axdc3lem2 10380 iundom2g 10469 pwcfsdom 10512 cfpwsdom 10513 tskr1om2 10697 genpelv 10929 prlem934 10962 suplem1pr 10981 supexpr 10983 supsrlem 11040 supsr 11041 fimaxre3 12105 iswrd 14456 caurcvgr 15616 caurcvg 15619 caucvg 15621 vdwapval 16920 restsspw 17370 mreunirn 17538 brssc 17756 arwhoma 17987 gexcl3 19501 dvdsr 20282 rhmdvdsr 20428 ellspsn 20941 lspprel 21033 ellspd 21744 iincld 22959 ssnei 23030 neindisj2 23043 neitr 23100 lecldbas 23139 tgcnp 23173 cncnp2 23201 lmmo 23300 is2ndc 23366 fbfinnfr 23761 fbunfip 23789 filunirn 23802 fbflim2 23897 flimcls 23905 hauspwpwf1 23907 flftg 23916 isfcls 23929 fclsbas 23941 isfcf 23954 ustfilxp 24133 ustbas 24148 restutop 24158 ucnima 24201 xmetunirn 24258 metss 24429 metrest 24445 restmetu 24491 qdensere 24690 elpi1 24978 lmmbr 25191 caun0 25214 nulmbl2 25470 itg2l 25663 aannenlem2 26270 taylfval 26299 ulmcl 26323 ulmpm 26325 ulmss 26339 elno 27590 nofun 27594 norn 27596 madeval2 27798 elmade 27816 tglnunirn 28528 ishpg 28739 edglnl 29123 uhgrwkspthlem1 29733 usgr2pth 29744 umgr2wlk 29929 elwwlks2ons3 29935 clwwlknun 30091 frgrncvvdeqlem3 30280 frgr2wwlkn0 30307 frgrreg 30373 hhcms 31182 hhsscms 31257 occllem 31282 occl 31283 chscllem2 31617 r19.29ffa 32450 rabfmpunirn 32627 kerunit 33290 tpr2rico 33895 gsumesum 34042 esumcst 34046 esumfsup 34053 esumpcvgval 34061 esumcvg 34069 sigaclcuni 34101 mbfmfun 34236 dya2icoseg2 34262 bnj66 34843 bnj517 34868 cusgr3cyclex 35116 rellysconn 35231 cvmliftlem15 35278 satffunlem2lem1 35384 r1peuqusdeg1 35623 dfrdg4 35932 brcolinear2 36039 brcolinear 36040 ellines 36133 poimirlem29 37636 volsupnfl 37652 unirep 37701 filbcmb 37727 islshpkrN 39106 ispointN 39729 pmapglbx 39756 rngunsnply 43151 elsetpreimafvbi 47385 cycldlenngric 47921 grtrif1o 47934 |
| Copyright terms: Public domain | W3C validator |