Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexlimivw | Structured version Visualization version GIF version |
Description: Weaker version of rexlimiv 3210. (Contributed by FL, 19-Sep-2011.) |
Ref | Expression |
---|---|
rexlimivw.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
rexlimivw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimivw.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
3 | 2 | rexlimiv 3210 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 ∃wrex 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-ral 3070 df-rex 3071 |
This theorem is referenced by: r19.29vvaOLD 3268 r19.36v 3273 r19.44v 3282 r19.45v 3283 sbcreu 3810 eliun 4929 reusv3i 5328 elrnmptg 5871 fvelrnb 6839 fvelimab 6850 iinpreima 6955 fmpt 6993 fliftfun 7192 elrnmpo 7419 ovelrn 7457 onuninsuci 7696 fiunlem 7793 releldm2 7893 tfrlem4 8219 iiner 8587 elixpsn 8734 isfi 8773 card2on 9322 brttrcl 9480 tz9.12lem1 9554 rankwflemb 9560 rankxpsuc 9649 scott0 9653 isnum2 9712 cardiun 9749 cardalephex 9855 dfac5lem4 9891 dfac12k 9912 cflim2 10028 cfss 10030 cfslb2n 10033 enfin2i 10086 fin23lem30 10107 itunitc 10186 axdc3lem2 10216 iundom2g 10305 pwcfsdom 10348 cfpwsdom 10349 tskr1om2 10533 genpelv 10765 prlem934 10798 suplem1pr 10817 supexpr 10819 supsrlem 10876 supsr 10877 fimaxre3 11930 iswrd 14228 caurcvgr 15394 caurcvg 15397 caucvg 15399 vdwapval 16683 restsspw 17151 mreunirn 17319 brssc 17535 arwhoma 17769 gexcl3 19201 dvdsr 19897 lspsnel 20274 lspprel 20365 ellspd 21018 iincld 22199 ssnei 22270 neindisj2 22283 neitr 22340 lecldbas 22379 tgcnp 22413 cncnp2 22441 lmmo 22540 is2ndc 22606 fbfinnfr 23001 fbunfip 23029 filunirn 23042 fbflim2 23137 flimcls 23145 hauspwpwf1 23147 flftg 23156 isfcls 23169 fclsbas 23181 isfcf 23194 ustfilxp 23373 ustbas 23388 restutop 23398 ucnima 23442 xmetunirn 23499 metss 23673 metrest 23689 restmetu 23735 qdensere 23942 elpi1 24217 lmmbr 24431 caun0 24454 nulmbl2 24709 itg2l 24903 aannenlem2 25498 taylfval 25527 ulmcl 25549 ulmpm 25551 ulmss 25565 tglnunirn 26918 ishpg 27129 edglnl 27522 uhgrwkspthlem1 28130 usgr2pth 28141 umgr2wlk 28323 elwwlks2ons3 28329 clwwlknun 28485 frgrncvvdeqlem3 28674 frgr2wwlkn0 28701 frgrreg 28767 hhcms 29574 hhsscms 29649 occllem 29674 occl 29675 chscllem2 30009 r19.29ffa 30831 rabfmpunirn 30999 rhmdvdsr 31526 kerunit 31531 tpr2rico 31871 gsumesum 32036 esumcst 32040 esumfsup 32047 esumpcvgval 32055 esumcvg 32063 sigaclcuni 32095 mbfmfun 32230 dya2icoseg2 32254 bnj66 32849 bnj517 32874 cusgr3cyclex 33107 rellysconn 33222 cvmliftlem15 33269 satffunlem2lem1 33375 poxp2 33799 poxp3 33805 orderseqlem 33810 nofun 33861 norn 33863 madeval2 34046 elmade 34060 dfrdg4 34262 brcolinear2 34369 brcolinear 34370 ellines 34463 poimirlem29 35815 volsupnfl 35831 unirep 35880 filbcmb 35907 islshpkrN 37141 ispointN 37763 pmapglbx 37790 rngunsnply 41005 elsetpreimafvbi 44854 |
Copyright terms: Public domain | W3C validator |