![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexlimivw | Structured version Visualization version GIF version |
Description: Weaker version of rexlimiv 3148. (Contributed by FL, 19-Sep-2011.) (Proof shortened by Wolf Lammen, 23-Dec-2024.) |
Ref | Expression |
---|---|
rexlimivw.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
rexlimivw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimivw.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | adantl 482 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
3 | 2 | rexlimiva 3147 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-rex 3071 |
This theorem is referenced by: r19.36v 3183 r19.45v 3192 r19.44v 3193 r19.29vvaOLD 3214 sbcreu 3870 eliun 5001 reusv3i 5402 elrnmptg 5958 fvelrnb 6952 fvelimab 6964 iinpreima 7070 fmpt 7111 fliftfun 7311 elrnmpo 7547 ovelrn 7585 onuninsuci 7831 fiunlem 7930 releldm2 8031 poxp2 8131 poxp3 8138 orderseqlem 8145 tfrlem4 8381 naddunif 8694 iiner 8785 elixpsn 8933 isfi 8974 card2on 9551 brttrcl 9710 tz9.12lem1 9784 rankwflemb 9790 rankxpsuc 9879 scott0 9883 isnum2 9942 cardiun 9979 cardalephex 10087 dfac5lem4 10123 dfac12k 10144 cflim2 10260 cfss 10262 cfslb2n 10265 enfin2i 10318 fin23lem30 10339 itunitc 10418 axdc3lem2 10448 iundom2g 10537 pwcfsdom 10580 cfpwsdom 10581 tskr1om2 10765 genpelv 10997 prlem934 11030 suplem1pr 11049 supexpr 11051 supsrlem 11108 supsr 11109 fimaxre3 12162 iswrd 14468 caurcvgr 15622 caurcvg 15625 caucvg 15627 vdwapval 16908 restsspw 17379 mreunirn 17547 brssc 17763 arwhoma 17997 gexcl3 19457 dvdsr 20180 rhmdvdsr 20291 lspsnel 20619 lspprel 20710 ellspd 21363 iincld 22550 ssnei 22621 neindisj2 22634 neitr 22691 lecldbas 22730 tgcnp 22764 cncnp2 22792 lmmo 22891 is2ndc 22957 fbfinnfr 23352 fbunfip 23380 filunirn 23393 fbflim2 23488 flimcls 23496 hauspwpwf1 23498 flftg 23507 isfcls 23520 fclsbas 23532 isfcf 23545 ustfilxp 23724 ustbas 23739 restutop 23749 ucnima 23793 xmetunirn 23850 metss 24024 metrest 24040 restmetu 24086 qdensere 24293 elpi1 24568 lmmbr 24782 caun0 24805 nulmbl2 25060 itg2l 25254 aannenlem2 25849 taylfval 25878 ulmcl 25900 ulmpm 25902 ulmss 25916 nofun 27159 norn 27161 madeval2 27356 elmade 27370 tglnunirn 27837 ishpg 28048 edglnl 28441 uhgrwkspthlem1 29048 usgr2pth 29059 umgr2wlk 29241 elwwlks2ons3 29247 clwwlknun 29403 frgrncvvdeqlem3 29592 frgr2wwlkn0 29619 frgrreg 29685 hhcms 30494 hhsscms 30569 occllem 30594 occl 30595 chscllem2 30929 r19.29ffa 31751 rabfmpunirn 31916 kerunit 32478 tpr2rico 32961 gsumesum 33126 esumcst 33130 esumfsup 33137 esumpcvgval 33145 esumcvg 33153 sigaclcuni 33185 mbfmfun 33320 dya2icoseg2 33346 bnj66 33940 bnj517 33965 cusgr3cyclex 34196 rellysconn 34311 cvmliftlem15 34358 satffunlem2lem1 34464 dfrdg4 34992 brcolinear2 35099 brcolinear 35100 ellines 35193 poimirlem29 36603 volsupnfl 36619 unirep 36668 filbcmb 36694 islshpkrN 38076 ispointN 38699 pmapglbx 38726 rngunsnply 41997 elsetpreimafvbi 46138 |
Copyright terms: Public domain | W3C validator |