![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexlimivw | Structured version Visualization version GIF version |
Description: Weaker version of rexlimiv 3154. (Contributed by FL, 19-Sep-2011.) (Proof shortened by Wolf Lammen, 23-Dec-2024.) |
Ref | Expression |
---|---|
rexlimivw.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
rexlimivw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimivw.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | adantl 481 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
3 | 2 | rexlimiva 3153 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-rex 3077 |
This theorem is referenced by: r19.36v 3190 r19.45v 3199 r19.44v 3200 r19.29vvaOLD 3223 sbcreu 3898 eliun 5019 reusv3i 5422 elrnmptg 5984 fvelrnb 6982 fvelimab 6994 iinpreima 7102 fmpt 7144 fliftfun 7348 elrnmpo 7586 ovelrn 7626 onuninsuci 7877 fiunlem 7982 releldm2 8084 poxp2 8184 poxp3 8191 orderseqlem 8198 tfrlem4 8435 naddunif 8749 iiner 8847 elixpsn 8995 isfi 9036 card2on 9623 brttrcl 9782 tz9.12lem1 9856 rankwflemb 9862 rankxpsuc 9951 scott0 9955 isnum2 10014 cardiun 10051 cardalephex 10159 dfac5lem4 10195 dfac5lem4OLD 10197 dfac12k 10217 cflim2 10332 cfss 10334 cfslb2n 10337 enfin2i 10390 fin23lem30 10411 itunitc 10490 axdc3lem2 10520 iundom2g 10609 pwcfsdom 10652 cfpwsdom 10653 tskr1om2 10837 genpelv 11069 prlem934 11102 suplem1pr 11121 supexpr 11123 supsrlem 11180 supsr 11181 fimaxre3 12241 iswrd 14564 caurcvgr 15722 caurcvg 15725 caucvg 15727 vdwapval 17020 restsspw 17491 mreunirn 17659 brssc 17875 arwhoma 18112 gexcl3 19629 dvdsr 20388 rhmdvdsr 20534 ellspsn 21024 lspprel 21116 ellspd 21845 iincld 23068 ssnei 23139 neindisj2 23152 neitr 23209 lecldbas 23248 tgcnp 23282 cncnp2 23310 lmmo 23409 is2ndc 23475 fbfinnfr 23870 fbunfip 23898 filunirn 23911 fbflim2 24006 flimcls 24014 hauspwpwf1 24016 flftg 24025 isfcls 24038 fclsbas 24050 isfcf 24063 ustfilxp 24242 ustbas 24257 restutop 24267 ucnima 24311 xmetunirn 24368 metss 24542 metrest 24558 restmetu 24604 qdensere 24811 elpi1 25097 lmmbr 25311 caun0 25334 nulmbl2 25590 itg2l 25784 aannenlem2 26389 taylfval 26418 ulmcl 26442 ulmpm 26444 ulmss 26458 elno 27708 nofun 27712 norn 27714 madeval2 27910 elmade 27924 tglnunirn 28574 ishpg 28785 edglnl 29178 uhgrwkspthlem1 29789 usgr2pth 29800 umgr2wlk 29982 elwwlks2ons3 29988 clwwlknun 30144 frgrncvvdeqlem3 30333 frgr2wwlkn0 30360 frgrreg 30426 hhcms 31235 hhsscms 31310 occllem 31335 occl 31336 chscllem2 31670 r19.29ffa 32500 rabfmpunirn 32671 kerunit 33314 tpr2rico 33858 gsumesum 34023 esumcst 34027 esumfsup 34034 esumpcvgval 34042 esumcvg 34050 sigaclcuni 34082 mbfmfun 34217 dya2icoseg2 34243 bnj66 34836 bnj517 34861 cusgr3cyclex 35104 rellysconn 35219 cvmliftlem15 35266 satffunlem2lem1 35372 r1peuqusdeg1 35611 dfrdg4 35915 brcolinear2 36022 brcolinear 36023 ellines 36116 poimirlem29 37609 volsupnfl 37625 unirep 37674 filbcmb 37700 islshpkrN 39076 ispointN 39699 pmapglbx 39726 rngunsnply 43130 elsetpreimafvbi 47265 grtrif1o 47793 |
Copyright terms: Public domain | W3C validator |