![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexlimivw | Structured version Visualization version GIF version |
Description: Weaker version of rexlimiv 3145. (Contributed by FL, 19-Sep-2011.) (Proof shortened by Wolf Lammen, 23-Dec-2024.) |
Ref | Expression |
---|---|
rexlimivw.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
rexlimivw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimivw.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | adantl 481 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
3 | 2 | rexlimiva 3144 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ∃wrex 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-rex 3068 |
This theorem is referenced by: r19.36v 3181 r19.45v 3190 r19.44v 3191 r19.29vvaOLD 3214 sbcreu 3884 eliun 4999 reusv3i 5409 elrnmptg 5974 fvelrnb 6968 fvelimab 6980 iinpreima 7088 fmpt 7129 fliftfun 7331 elrnmpo 7568 ovelrn 7608 onuninsuci 7860 fiunlem 7964 releldm2 8066 poxp2 8166 poxp3 8173 orderseqlem 8180 tfrlem4 8417 naddunif 8729 iiner 8827 elixpsn 8975 isfi 9014 card2on 9591 brttrcl 9750 tz9.12lem1 9824 rankwflemb 9830 rankxpsuc 9919 scott0 9923 isnum2 9982 cardiun 10019 cardalephex 10127 dfac5lem4 10163 dfac5lem4OLD 10165 dfac12k 10185 cflim2 10300 cfss 10302 cfslb2n 10305 enfin2i 10358 fin23lem30 10379 itunitc 10458 axdc3lem2 10488 iundom2g 10577 pwcfsdom 10620 cfpwsdom 10621 tskr1om2 10805 genpelv 11037 prlem934 11070 suplem1pr 11089 supexpr 11091 supsrlem 11148 supsr 11149 fimaxre3 12211 iswrd 14550 caurcvgr 15706 caurcvg 15709 caucvg 15711 vdwapval 17006 restsspw 17477 mreunirn 17645 brssc 17861 arwhoma 18098 gexcl3 19619 dvdsr 20378 rhmdvdsr 20524 ellspsn 21018 lspprel 21110 ellspd 21839 iincld 23062 ssnei 23133 neindisj2 23146 neitr 23203 lecldbas 23242 tgcnp 23276 cncnp2 23304 lmmo 23403 is2ndc 23469 fbfinnfr 23864 fbunfip 23892 filunirn 23905 fbflim2 24000 flimcls 24008 hauspwpwf1 24010 flftg 24019 isfcls 24032 fclsbas 24044 isfcf 24057 ustfilxp 24236 ustbas 24251 restutop 24261 ucnima 24305 xmetunirn 24362 metss 24536 metrest 24552 restmetu 24598 qdensere 24805 elpi1 25091 lmmbr 25305 caun0 25328 nulmbl2 25584 itg2l 25778 aannenlem2 26385 taylfval 26414 ulmcl 26438 ulmpm 26440 ulmss 26454 elno 27704 nofun 27708 norn 27710 madeval2 27906 elmade 27920 tglnunirn 28570 ishpg 28781 edglnl 29174 uhgrwkspthlem1 29785 usgr2pth 29796 umgr2wlk 29978 elwwlks2ons3 29984 clwwlknun 30140 frgrncvvdeqlem3 30329 frgr2wwlkn0 30356 frgrreg 30422 hhcms 31231 hhsscms 31306 occllem 31331 occl 31332 chscllem2 31666 r19.29ffa 32499 rabfmpunirn 32669 kerunit 33328 tpr2rico 33872 gsumesum 34039 esumcst 34043 esumfsup 34050 esumpcvgval 34058 esumcvg 34066 sigaclcuni 34098 mbfmfun 34233 dya2icoseg2 34259 bnj66 34852 bnj517 34877 cusgr3cyclex 35120 rellysconn 35235 cvmliftlem15 35282 satffunlem2lem1 35388 r1peuqusdeg1 35627 dfrdg4 35932 brcolinear2 36039 brcolinear 36040 ellines 36133 poimirlem29 37635 volsupnfl 37651 unirep 37700 filbcmb 37726 islshpkrN 39101 ispointN 39724 pmapglbx 39751 rngunsnply 43157 elsetpreimafvbi 47315 grtrif1o 47846 |
Copyright terms: Public domain | W3C validator |