| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexlimivw | Structured version Visualization version GIF version | ||
| Description: Weaker version of rexlimiv 3128. (Contributed by FL, 19-Sep-2011.) (Proof shortened by Wolf Lammen, 23-Dec-2024.) |
| Ref | Expression |
|---|---|
| rexlimivw.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| rexlimivw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimivw.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
| 3 | 2 | rexlimiva 3127 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3055 |
| This theorem is referenced by: r19.36v 3163 r19.45v 3172 r19.44v 3173 sbcreu 3842 eliun 4962 reusv3i 5362 elrnmptg 5928 fvelrnb 6924 fvelimab 6936 iinpreima 7044 fmpt 7085 fliftfun 7290 elrnmpo 7528 ovelrn 7568 onuninsuci 7819 fiunlem 7923 releldm2 8025 poxp2 8125 poxp3 8132 orderseqlem 8139 tfrlem4 8350 naddunif 8660 iiner 8765 elixpsn 8913 isfi 8950 card2on 9514 brttrcl 9673 tz9.12lem1 9747 rankwflemb 9753 rankxpsuc 9842 scott0 9846 isnum2 9905 cardiun 9942 cardalephex 10050 dfac5lem4 10086 dfac5lem4OLD 10088 dfac12k 10108 cflim2 10223 cfss 10225 cfslb2n 10228 enfin2i 10281 fin23lem30 10302 itunitc 10381 axdc3lem2 10411 iundom2g 10500 pwcfsdom 10543 cfpwsdom 10544 tskr1om2 10728 genpelv 10960 prlem934 10993 suplem1pr 11012 supexpr 11014 supsrlem 11071 supsr 11072 fimaxre3 12136 iswrd 14487 caurcvgr 15647 caurcvg 15650 caucvg 15652 vdwapval 16951 restsspw 17401 mreunirn 17569 brssc 17783 arwhoma 18014 gexcl3 19524 dvdsr 20278 rhmdvdsr 20424 ellspsn 20916 lspprel 21008 ellspd 21718 iincld 22933 ssnei 23004 neindisj2 23017 neitr 23074 lecldbas 23113 tgcnp 23147 cncnp2 23175 lmmo 23274 is2ndc 23340 fbfinnfr 23735 fbunfip 23763 filunirn 23776 fbflim2 23871 flimcls 23879 hauspwpwf1 23881 flftg 23890 isfcls 23903 fclsbas 23915 isfcf 23928 ustfilxp 24107 ustbas 24122 restutop 24132 ucnima 24175 xmetunirn 24232 metss 24403 metrest 24419 restmetu 24465 qdensere 24664 elpi1 24952 lmmbr 25165 caun0 25188 nulmbl2 25444 itg2l 25637 aannenlem2 26244 taylfval 26273 ulmcl 26297 ulmpm 26299 ulmss 26313 elno 27564 nofun 27568 norn 27570 madeval2 27768 elmade 27786 tglnunirn 28482 ishpg 28693 edglnl 29077 uhgrwkspthlem1 29690 usgr2pth 29701 umgr2wlk 29886 elwwlks2ons3 29892 clwwlknun 30048 frgrncvvdeqlem3 30237 frgr2wwlkn0 30264 frgrreg 30330 hhcms 31139 hhsscms 31214 occllem 31239 occl 31240 chscllem2 31574 r19.29ffa 32407 rabfmpunirn 32584 kerunit 33304 tpr2rico 33909 gsumesum 34056 esumcst 34060 esumfsup 34067 esumpcvgval 34075 esumcvg 34083 sigaclcuni 34115 mbfmfun 34250 dya2icoseg2 34276 bnj66 34857 bnj517 34882 cusgr3cyclex 35130 rellysconn 35245 cvmliftlem15 35292 satffunlem2lem1 35398 r1peuqusdeg1 35637 dfrdg4 35946 brcolinear2 36053 brcolinear 36054 ellines 36147 poimirlem29 37650 volsupnfl 37666 unirep 37715 filbcmb 37741 islshpkrN 39120 ispointN 39743 pmapglbx 39770 rngunsnply 43165 elsetpreimafvbi 47396 cycldlenngric 47932 grtrif1o 47945 |
| Copyright terms: Public domain | W3C validator |