Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexlimivw | Structured version Visualization version GIF version |
Description: Weaker version of rexlimiv 3208. (Contributed by FL, 19-Sep-2011.) |
Ref | Expression |
---|---|
rexlimivw.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
rexlimivw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimivw.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
3 | 2 | rexlimiv 3208 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-ral 3068 df-rex 3069 |
This theorem is referenced by: r19.29vvaOLD 3264 r19.36v 3269 r19.44v 3278 r19.45v 3279 sbcreu 3805 eliun 4925 reusv3i 5322 elrnmptg 5857 fvelrnb 6812 fvelimab 6823 iinpreima 6928 fmpt 6966 fliftfun 7163 elrnmpo 7388 ovelrn 7426 onuninsuci 7662 fiunlem 7758 releldm2 7857 tfrlem4 8181 iiner 8536 elixpsn 8683 isfi 8719 card2on 9243 tz9.12lem1 9476 rankwflemb 9482 rankxpsuc 9571 scott0 9575 isnum2 9634 cardiun 9671 cardalephex 9777 dfac5lem4 9813 dfac12k 9834 cflim2 9950 cfss 9952 cfslb2n 9955 enfin2i 10008 fin23lem30 10029 itunitc 10108 axdc3lem2 10138 iundom2g 10227 pwcfsdom 10270 cfpwsdom 10271 tskr1om2 10455 genpelv 10687 prlem934 10720 suplem1pr 10739 supexpr 10741 supsrlem 10798 supsr 10799 fimaxre3 11851 iswrd 14147 caurcvgr 15313 caurcvg 15316 caucvg 15318 vdwapval 16602 restsspw 17059 mreunirn 17227 brssc 17443 arwhoma 17676 gexcl3 19107 dvdsr 19803 lspsnel 20180 lspprel 20271 ellspd 20919 iincld 22098 ssnei 22169 neindisj2 22182 neitr 22239 lecldbas 22278 tgcnp 22312 cncnp2 22340 lmmo 22439 is2ndc 22505 fbfinnfr 22900 fbunfip 22928 filunirn 22941 fbflim2 23036 flimcls 23044 hauspwpwf1 23046 flftg 23055 isfcls 23068 fclsbas 23080 isfcf 23093 ustfilxp 23272 ustbas 23287 restutop 23297 ucnima 23341 xmetunirn 23398 metss 23570 metrest 23586 restmetu 23632 qdensere 23839 elpi1 24114 lmmbr 24327 caun0 24350 nulmbl2 24605 itg2l 24799 aannenlem2 25394 taylfval 25423 ulmcl 25445 ulmpm 25447 ulmss 25461 tglnunirn 26813 ishpg 27024 edglnl 27416 uhgrwkspthlem1 28022 usgr2pth 28033 umgr2wlk 28215 elwwlks2ons3 28221 clwwlknun 28377 frgrncvvdeqlem3 28566 frgr2wwlkn0 28593 frgrreg 28659 hhcms 29466 hhsscms 29541 occllem 29566 occl 29567 chscllem2 29901 r19.29ffa 30723 rabfmpunirn 30892 rhmdvdsr 31419 kerunit 31424 tpr2rico 31764 gsumesum 31927 esumcst 31931 esumfsup 31938 esumpcvgval 31946 esumcvg 31954 sigaclcuni 31986 mbfmfun 32121 dya2icoseg2 32145 bnj66 32740 bnj517 32765 cusgr3cyclex 32998 rellysconn 33113 cvmliftlem15 33160 satffunlem2lem1 33266 brttrcl 33699 poxp2 33717 poxp3 33723 orderseqlem 33728 nofun 33779 norn 33781 madeval2 33964 elmade 33978 dfrdg4 34180 brcolinear2 34287 brcolinear 34288 ellines 34381 poimirlem29 35733 volsupnfl 35749 unirep 35798 filbcmb 35825 islshpkrN 37061 ispointN 37683 pmapglbx 37710 rngunsnply 40914 elsetpreimafvbi 44731 |
Copyright terms: Public domain | W3C validator |