Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexlimivw | Structured version Visualization version GIF version |
Description: Weaker version of rexlimiv 3205. (Contributed by FL, 19-Sep-2011.) |
Ref | Expression |
---|---|
rexlimivw.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
rexlimivw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimivw.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
3 | 2 | rexlimiv 3205 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2112 ∃wrex 3072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 |
This theorem depends on definitions: df-bi 210 df-an 401 df-ex 1783 df-ral 3076 df-rex 3077 |
This theorem is referenced by: r19.29vva 3258 r19.36v 3262 r19.44v 3271 r19.45v 3272 sbcreu 3783 eliun 4885 reusv3i 5271 elrnmptg 5798 fvelrnb 6712 fvelimab 6723 iinpreima 6826 fmpt 6863 fliftfun 7057 elrnmpo 7280 ovelrn 7318 onuninsuci 7552 fiunlem 7645 releldm2 7744 tfrlem4 8023 iiner 8377 elixpsn 8517 isfi 8549 card2on 9041 tz9.12lem1 9239 rankwflemb 9245 rankxpsuc 9334 scott0 9338 isnum2 9397 cardiun 9434 cardalephex 9540 dfac5lem4 9576 dfac12k 9597 cflim2 9713 cfss 9715 cfslb2n 9718 enfin2i 9771 fin23lem30 9792 itunitc 9871 axdc3lem2 9901 iundom2g 9990 pwcfsdom 10033 cfpwsdom 10034 tskr1om2 10218 genpelv 10450 prlem934 10483 suplem1pr 10502 supexpr 10504 supsrlem 10561 supsr 10562 fimaxre3 11614 iswrd 13905 caurcvgr 15068 caurcvg 15071 caucvg 15073 vdwapval 16354 restsspw 16753 mreunirn 16920 brssc 17133 arwhoma 17361 gexcl3 18769 dvdsr 19457 lspsnel 19833 lspprel 19924 ellspd 20557 iincld 21729 ssnei 21800 neindisj2 21813 neitr 21870 lecldbas 21909 tgcnp 21943 cncnp2 21971 lmmo 22070 is2ndc 22136 fbfinnfr 22531 fbunfip 22559 filunirn 22572 fbflim2 22667 flimcls 22675 hauspwpwf1 22677 flftg 22686 isfcls 22699 fclsbas 22711 isfcf 22724 ustfilxp 22903 ustbas 22918 restutop 22928 ucnima 22972 xmetunirn 23029 metss 23200 metrest 23216 restmetu 23262 qdensere 23461 elpi1 23736 lmmbr 23948 caun0 23971 nulmbl2 24226 itg2l 24419 aannenlem2 25014 taylfval 25043 ulmcl 25065 ulmpm 25067 ulmss 25081 tglnunirn 26431 ishpg 26642 edglnl 27025 uhgrwkspthlem1 27631 usgr2pth 27642 umgr2wlk 27824 elwwlks2ons3 27830 clwwlknun 27986 frgrncvvdeqlem3 28175 frgr2wwlkn0 28202 frgrreg 28268 hhcms 29075 hhsscms 29150 occllem 29175 occl 29176 chscllem2 29510 r19.29ffa 30333 rabfmpunirn 30504 rhmdvdsr 31033 kerunit 31038 tpr2rico 31373 gsumesum 31536 esumcst 31540 esumfsup 31547 esumpcvgval 31555 esumcvg 31563 sigaclcuni 31595 mbfmfun 31730 dya2icoseg2 31754 bnj66 32350 bnj517 32375 cusgr3cyclex 32604 rellysconn 32719 cvmliftlem15 32766 satffunlem2lem1 32872 poxp2 33335 poxp3 33341 orderseqlem 33345 nofun 33407 norn 33409 madeval2 33587 elmade 33597 dfrdg4 33792 brcolinear2 33899 brcolinear 33900 ellines 33993 poimirlem29 35356 volsupnfl 35372 unirep 35421 filbcmb 35448 islshpkrN 36686 ispointN 37308 pmapglbx 37335 rngunsnply 40480 elsetpreimafvbi 44266 |
Copyright terms: Public domain | W3C validator |