| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexlimivw | Structured version Visualization version GIF version | ||
| Description: Weaker version of rexlimiv 3127. (Contributed by FL, 19-Sep-2011.) (Proof shortened by Wolf Lammen, 23-Dec-2024.) |
| Ref | Expression |
|---|---|
| rexlimivw.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| rexlimivw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimivw.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
| 3 | 2 | rexlimiva 3126 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: r19.36v 3162 r19.45v 3171 r19.44v 3172 sbcreu 3839 eliun 4959 reusv3i 5359 elrnmptg 5925 fvelrnb 6921 fvelimab 6933 iinpreima 7041 fmpt 7082 fliftfun 7287 elrnmpo 7525 ovelrn 7565 onuninsuci 7816 fiunlem 7920 releldm2 8022 poxp2 8122 poxp3 8129 orderseqlem 8136 tfrlem4 8347 naddunif 8657 iiner 8762 elixpsn 8910 isfi 8947 card2on 9507 brttrcl 9666 tz9.12lem1 9740 rankwflemb 9746 rankxpsuc 9835 scott0 9839 isnum2 9898 cardiun 9935 cardalephex 10043 dfac5lem4 10079 dfac5lem4OLD 10081 dfac12k 10101 cflim2 10216 cfss 10218 cfslb2n 10221 enfin2i 10274 fin23lem30 10295 itunitc 10374 axdc3lem2 10404 iundom2g 10493 pwcfsdom 10536 cfpwsdom 10537 tskr1om2 10721 genpelv 10953 prlem934 10986 suplem1pr 11005 supexpr 11007 supsrlem 11064 supsr 11065 fimaxre3 12129 iswrd 14480 caurcvgr 15640 caurcvg 15643 caucvg 15645 vdwapval 16944 restsspw 17394 mreunirn 17562 brssc 17776 arwhoma 18007 gexcl3 19517 dvdsr 20271 rhmdvdsr 20417 ellspsn 20909 lspprel 21001 ellspd 21711 iincld 22926 ssnei 22997 neindisj2 23010 neitr 23067 lecldbas 23106 tgcnp 23140 cncnp2 23168 lmmo 23267 is2ndc 23333 fbfinnfr 23728 fbunfip 23756 filunirn 23769 fbflim2 23864 flimcls 23872 hauspwpwf1 23874 flftg 23883 isfcls 23896 fclsbas 23908 isfcf 23921 ustfilxp 24100 ustbas 24115 restutop 24125 ucnima 24168 xmetunirn 24225 metss 24396 metrest 24412 restmetu 24458 qdensere 24657 elpi1 24945 lmmbr 25158 caun0 25181 nulmbl2 25437 itg2l 25630 aannenlem2 26237 taylfval 26266 ulmcl 26290 ulmpm 26292 ulmss 26306 elno 27557 nofun 27561 norn 27563 madeval2 27761 elmade 27779 tglnunirn 28475 ishpg 28686 edglnl 29070 uhgrwkspthlem1 29683 usgr2pth 29694 umgr2wlk 29879 elwwlks2ons3 29885 clwwlknun 30041 frgrncvvdeqlem3 30230 frgr2wwlkn0 30257 frgrreg 30323 hhcms 31132 hhsscms 31207 occllem 31232 occl 31233 chscllem2 31567 r19.29ffa 32400 rabfmpunirn 32577 kerunit 33297 tpr2rico 33902 gsumesum 34049 esumcst 34053 esumfsup 34060 esumpcvgval 34068 esumcvg 34076 sigaclcuni 34108 mbfmfun 34243 dya2icoseg2 34269 bnj66 34850 bnj517 34875 cusgr3cyclex 35123 rellysconn 35238 cvmliftlem15 35285 satffunlem2lem1 35391 r1peuqusdeg1 35630 dfrdg4 35939 brcolinear2 36046 brcolinear 36047 ellines 36140 poimirlem29 37643 volsupnfl 37659 unirep 37708 filbcmb 37734 islshpkrN 39113 ispointN 39736 pmapglbx 39763 rngunsnply 43158 elsetpreimafvbi 47392 cycldlenngric 47928 grtrif1o 47941 |
| Copyright terms: Public domain | W3C validator |