| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexlimivw | Structured version Visualization version GIF version | ||
| Description: Weaker version of rexlimiv 3123. (Contributed by FL, 19-Sep-2011.) (Proof shortened by Wolf Lammen, 23-Dec-2024.) |
| Ref | Expression |
|---|---|
| rexlimivw.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| rexlimivw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimivw.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
| 3 | 2 | rexlimiva 3122 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: r19.36v 3157 r19.45v 3163 r19.44v 3164 sbcreu 3828 eliun 4945 reusv3i 5343 elrnmptg 5903 fvelrnb 6883 fvelimab 6895 iinpreima 7003 fmpt 7044 fliftfun 7249 elrnmpo 7485 ovelrn 7525 onuninsuci 7773 fiunlem 7877 releldm2 7978 poxp2 8076 poxp3 8083 orderseqlem 8090 tfrlem4 8301 naddunif 8611 iiner 8716 elixpsn 8864 isfi 8901 card2on 9446 brttrcl 9609 tz9.12lem1 9683 rankwflemb 9689 rankxpsuc 9778 scott0 9782 isnum2 9841 cardiun 9878 cardalephex 9984 dfac5lem4 10020 dfac5lem4OLD 10022 dfac12k 10042 cflim2 10157 cfss 10159 cfslb2n 10162 enfin2i 10215 fin23lem30 10236 itunitc 10315 axdc3lem2 10345 iundom2g 10434 pwcfsdom 10477 cfpwsdom 10478 tskr1om2 10662 genpelv 10894 prlem934 10927 suplem1pr 10946 supexpr 10948 supsrlem 11005 supsr 11006 fimaxre3 12071 iswrd 14422 caurcvgr 15581 caurcvg 15584 caucvg 15586 vdwapval 16885 restsspw 17335 mreunirn 17503 brssc 17721 arwhoma 17952 gexcl3 19466 dvdsr 20247 rhmdvdsr 20393 ellspsn 20906 lspprel 20998 ellspd 21709 iincld 22924 ssnei 22995 neindisj2 23008 neitr 23065 lecldbas 23104 tgcnp 23138 cncnp2 23166 lmmo 23265 is2ndc 23331 fbfinnfr 23726 fbunfip 23754 filunirn 23767 fbflim2 23862 flimcls 23870 hauspwpwf1 23872 flftg 23881 isfcls 23894 fclsbas 23906 isfcf 23919 ustfilxp 24098 ustbas 24113 restutop 24123 ucnima 24166 xmetunirn 24223 metss 24394 metrest 24410 restmetu 24456 qdensere 24655 elpi1 24943 lmmbr 25156 caun0 25179 nulmbl2 25435 itg2l 25628 aannenlem2 26235 taylfval 26264 ulmcl 26288 ulmpm 26290 ulmss 26304 elno 27555 nofun 27559 norn 27561 madeval2 27763 elmade 27781 tglnunirn 28493 ishpg 28704 edglnl 29088 uhgrwkspthlem1 29698 usgr2pth 29709 umgr2wlk 29894 elwwlks2ons3 29900 clwwlknun 30056 frgrncvvdeqlem3 30245 frgr2wwlkn0 30272 frgrreg 30338 hhcms 31147 hhsscms 31222 occllem 31247 occl 31248 chscllem2 31582 r19.29ffa 32415 rabfmpunirn 32596 kerunit 33263 tpr2rico 33879 gsumesum 34026 esumcst 34030 esumfsup 34037 esumpcvgval 34045 esumcvg 34053 sigaclcuni 34085 mbfmfun 34220 dya2icoseg2 34246 bnj66 34827 bnj517 34852 cusgr3cyclex 35109 rellysconn 35224 cvmliftlem15 35271 satffunlem2lem1 35377 r1peuqusdeg1 35616 dfrdg4 35925 brcolinear2 36032 brcolinear 36033 ellines 36126 poimirlem29 37629 volsupnfl 37645 unirep 37694 filbcmb 37720 islshpkrN 39099 ispointN 39721 pmapglbx 39748 rngunsnply 43142 elsetpreimafvbi 47375 cycldlenngric 47912 grtrif1o 47926 |
| Copyright terms: Public domain | W3C validator |