Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.27v | Structured version Visualization version GIF version |
Description: Restricted quantitifer version of one direction of 19.27 2220. (Assuming Ⅎ𝑥𝐴, the other direction holds when 𝐴 is nonempty, see r19.27zv 4436.) (Contributed by NM, 3-Jun-2004.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 17-Jun-2023.) |
Ref | Expression |
---|---|
r19.27v | ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝜓 → 𝜓) | |
2 | 1 | ralrimivw 3104 | . . 3 ⊢ (𝜓 → ∀𝑥 ∈ 𝐴 𝜓) |
3 | 2 | anim2i 617 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
4 | r19.26 3095 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | |
5 | 3, 4 | sylibr 233 | 1 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wral 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ral 3069 |
This theorem is referenced by: txlm 22799 tx1stc 22801 spanuni 29906 |
Copyright terms: Public domain | W3C validator |