MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.43 Structured version   Visualization version   GIF version

Theorem r19.43 3101
Description: Restricted quantifier version of 19.43 1882. (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
r19.43 (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓))

Proof of Theorem r19.43
StepHypRef Expression
1 r19.35 3088 . 2 (∃𝑥𝐴𝜑𝜓) ↔ (∀𝑥𝐴 ¬ 𝜑 → ∃𝑥𝐴 𝜓))
2 df-or 848 . . 3 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
32rexbii 3076 . 2 (∃𝑥𝐴 (𝜑𝜓) ↔ ∃𝑥𝐴𝜑𝜓))
4 df-or 848 . . 3 ((∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓) ↔ (¬ ∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))
5 ralnex 3055 . . . 4 (∀𝑥𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥𝐴 𝜑)
65imbi1i 349 . . 3 ((∀𝑥𝐴 ¬ 𝜑 → ∃𝑥𝐴 𝜓) ↔ (¬ ∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))
74, 6bitr4i 278 . 2 ((∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓) ↔ (∀𝑥𝐴 ¬ 𝜑 → ∃𝑥𝐴 𝜓))
81, 3, 73bitr4i 303 1 (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 847  wral 3044  wrex 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-ral 3045  df-rex 3054
This theorem is referenced by:  3r19.43  3102  r19.45v  3169  r19.44v  3170  r19.45zv  4462  r19.44zv  4463  iunun  5052  soseq  8115  wemapsolem  9479  pythagtriplem2  16764  pythagtrip  16781  dcubic  26789  addsdilem1  28094  mulsasslem2  28107  legtrid  28571  axcontlem4  28947  erdszelem11  35181  satfvsucsuc  35345  fmla1  35367  seglelin  36097  hashnexinjle  42110  fimgmcyclem  42514  rexor  42649  diophun  42754  rexzrexnn0  42785  dfvopnbgr2  47846  dfsclnbgr6  47851  ldepslinc  48491
  Copyright terms: Public domain W3C validator