| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.43 | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.43 1882. (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| r19.43 | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.35 3089 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (¬ 𝜑 → 𝜓) ↔ (∀𝑥 ∈ 𝐴 ¬ 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | |
| 2 | df-or 848 | . . 3 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
| 3 | 2 | rexbii 3077 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ ∃𝑥 ∈ 𝐴 (¬ 𝜑 → 𝜓)) |
| 4 | df-or 848 | . . 3 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓) ↔ (¬ ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | |
| 5 | ralnex 3056 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | |
| 6 | 5 | imbi1i 349 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 ¬ 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) ↔ (¬ ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
| 7 | 4, 6 | bitr4i 278 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓) ↔ (∀𝑥 ∈ 𝐴 ¬ 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
| 8 | 1, 3, 7 | 3bitr4i 303 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 ∀wral 3045 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-ral 3046 df-rex 3055 |
| This theorem is referenced by: 3r19.43 3103 r19.45v 3172 r19.44v 3173 r19.45zv 4469 r19.44zv 4470 iunun 5060 soseq 8141 wemapsolem 9510 pythagtriplem2 16795 pythagtrip 16812 dcubic 26763 addsdilem1 28061 mulsasslem2 28074 legtrid 28525 axcontlem4 28901 erdszelem11 35195 satfvsucsuc 35359 fmla1 35381 seglelin 36111 hashnexinjle 42124 fimgmcyclem 42528 rexor 42663 diophun 42768 rexzrexnn0 42799 dfvopnbgr2 47857 dfsclnbgr6 47862 ldepslinc 48502 |
| Copyright terms: Public domain | W3C validator |