| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.43 | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.43 1882. (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| r19.43 | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.35 3088 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (¬ 𝜑 → 𝜓) ↔ (∀𝑥 ∈ 𝐴 ¬ 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | |
| 2 | df-or 848 | . . 3 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
| 3 | 2 | rexbii 3076 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ ∃𝑥 ∈ 𝐴 (¬ 𝜑 → 𝜓)) |
| 4 | df-or 848 | . . 3 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓) ↔ (¬ ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | |
| 5 | ralnex 3055 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | |
| 6 | 5 | imbi1i 349 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 ¬ 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) ↔ (¬ ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
| 7 | 4, 6 | bitr4i 278 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓) ↔ (∀𝑥 ∈ 𝐴 ¬ 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
| 8 | 1, 3, 7 | 3bitr4i 303 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: 3r19.43 3102 r19.45v 3171 r19.44v 3172 r19.45zv 4466 r19.44zv 4467 iunun 5057 soseq 8138 wemapsolem 9503 pythagtriplem2 16788 pythagtrip 16805 dcubic 26756 addsdilem1 28054 mulsasslem2 28067 legtrid 28518 axcontlem4 28894 erdszelem11 35188 satfvsucsuc 35352 fmla1 35374 seglelin 36104 hashnexinjle 42117 fimgmcyclem 42521 rexor 42656 diophun 42761 rexzrexnn0 42792 dfvopnbgr2 47853 dfsclnbgr6 47858 ldepslinc 48498 |
| Copyright terms: Public domain | W3C validator |