![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.43 | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.43 1982. (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
r19.43 | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.35 3265 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (¬ 𝜑 → 𝜓) ↔ (∀𝑥 ∈ 𝐴 ¬ 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | |
2 | df-or 875 | . . 3 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
3 | 2 | rexbii 3222 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ ∃𝑥 ∈ 𝐴 (¬ 𝜑 → 𝜓)) |
4 | df-or 875 | . . 3 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓) ↔ (¬ ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | |
5 | ralnex 3173 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | |
6 | 5 | imbi1i 341 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 ¬ 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) ↔ (¬ ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
7 | 4, 6 | bitr4i 270 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓) ↔ (∀𝑥 ∈ 𝐴 ¬ 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
8 | 1, 3, 7 | 3bitr4i 295 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∨ wo 874 ∀wral 3089 ∃wrex 3090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-ex 1876 df-ral 3094 df-rex 3095 |
This theorem is referenced by: r19.44v 3275 r19.45v 3276 r19.45zv 4261 r19.44zv 4262 iunun 4795 wemapsolem 8697 pythagtriplem2 15855 pythagtrip 15872 dcubic 24925 legtrid 25842 axcontlem4 26204 erdszelem11 31700 soseq 32267 seglelin 32736 diophun 38123 rexzrexnn0 38154 ldepslinc 43097 |
Copyright terms: Public domain | W3C validator |