MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.43 Structured version   Visualization version   GIF version

Theorem r19.43 3122
Description: Restricted quantifier version of 19.43 1883. (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
r19.43 (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓))

Proof of Theorem r19.43
StepHypRef Expression
1 r19.35 3108 . 2 (∃𝑥𝐴𝜑𝜓) ↔ (∀𝑥𝐴 ¬ 𝜑 → ∃𝑥𝐴 𝜓))
2 df-or 846 . . 3 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
32rexbii 3094 . 2 (∃𝑥𝐴 (𝜑𝜓) ↔ ∃𝑥𝐴𝜑𝜓))
4 df-or 846 . . 3 ((∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓) ↔ (¬ ∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))
5 ralnex 3073 . . . 4 (∀𝑥𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥𝐴 𝜑)
65imbi1i 350 . . 3 ((∀𝑥𝐴 ¬ 𝜑 → ∃𝑥𝐴 𝜓) ↔ (¬ ∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))
74, 6bitr4i 278 . 2 ((∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓) ↔ (∀𝑥𝐴 ¬ 𝜑 → ∃𝑥𝐴 𝜓))
81, 3, 73bitr4i 303 1 (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wo 845  wral 3062  wrex 3071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-ex 1780  df-ral 3063  df-rex 3072
This theorem is referenced by:  r19.45v  3186  r19.44v  3187  r19.45zv  4439  r19.44zv  4440  iunun  5029  wemapsolem  9353  pythagtriplem2  16563  pythagtrip  16580  dcubic  26041  legtrid  26997  axcontlem4  27380  erdszelem11  33208  satfvsucsuc  33372  fmla1  33394  soseq  33848  seglelin  34463  diophun  40632  rexzrexnn0  40663  ldepslinc  45908
  Copyright terms: Public domain W3C validator