Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ruvALT Structured version   Visualization version   GIF version

Theorem ruvALT 42626
Description: Alternate proof of ruv 9673 with one fewer syntax step thanks to using elirrv 9667 instead of elirr 9668. However, it does not change the compressed proof size or the number of symbols in the generated display, so it is not considered a shortening according to conventions 30434. (Contributed by SN, 1-Sep-2024.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
ruvALT {𝑥𝑥𝑥} = V

Proof of Theorem ruvALT
StepHypRef Expression
1 vex 3492 . . . 4 𝑥 ∈ V
2 elirrv 9667 . . . . 5 ¬ 𝑥𝑥
32nelir 3055 . . . 4 𝑥𝑥
41, 32th 264 . . 3 (𝑥 ∈ V ↔ 𝑥𝑥)
54eqabi 2880 . 2 V = {𝑥𝑥𝑥}
65eqcomi 2749 1 {𝑥𝑥𝑥} = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  {cab 2717  wnel 3052  Vcvv 3488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-pr 5447  ax-reg 9663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nel 3053  df-ral 3068  df-rex 3077  df-v 3490  df-un 3981  df-sn 4649  df-pr 4651
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator