Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ruvALT | Structured version Visualization version GIF version |
Description: Alternate proof of ruv 9361 with one fewer syntax step thanks to using elirrv 9355 instead of elirr 9356. However, it does not change the compressed proof size or the number of symbols in the generated display, so it is not considered a shortening according to conventions 28764. (Contributed by SN, 1-Sep-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
ruvALT | ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3436 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | elirrv 9355 | . . . . 5 ⊢ ¬ 𝑥 ∈ 𝑥 | |
3 | 2 | nelir 3052 | . . . 4 ⊢ 𝑥 ∉ 𝑥 |
4 | 1, 3 | 2th 263 | . . 3 ⊢ (𝑥 ∈ V ↔ 𝑥 ∉ 𝑥) |
5 | 4 | abbi2i 2879 | . 2 ⊢ V = {𝑥 ∣ 𝑥 ∉ 𝑥} |
6 | 5 | eqcomi 2747 | 1 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 {cab 2715 ∉ wnel 3049 Vcvv 3432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-reg 9351 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nel 3050 df-ral 3069 df-rex 3070 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-sn 4562 df-pr 4564 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |