![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ruvALT | Structured version Visualization version GIF version |
Description: Alternate proof of ruv 9649 with one fewer syntax step thanks to using elirrv 9643 instead of elirr 9644. However, it does not change the compressed proof size or the number of symbols in the generated display, so it is not considered a shortening according to conventions 30445. (Contributed by SN, 1-Sep-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
ruvALT | ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3485 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | elirrv 9643 | . . . . 5 ⊢ ¬ 𝑥 ∈ 𝑥 | |
3 | 2 | nelir 3049 | . . . 4 ⊢ 𝑥 ∉ 𝑥 |
4 | 1, 3 | 2th 264 | . . 3 ⊢ (𝑥 ∈ V ↔ 𝑥 ∉ 𝑥) |
5 | 4 | eqabi 2877 | . 2 ⊢ V = {𝑥 ∣ 𝑥 ∉ 𝑥} |
6 | 5 | eqcomi 2746 | 1 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 {cab 2714 ∉ wnel 3046 Vcvv 3481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-pr 5441 ax-reg 9639 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nel 3047 df-ral 3062 df-rex 3071 df-v 3483 df-un 3971 df-sn 4635 df-pr 4637 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |