Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ruvALT Structured version   Visualization version   GIF version

Theorem ruvALT 42642
Description: Alternate proof of ruv 9624 with one fewer syntax step thanks to using elirrv 9618 instead of elirr 9619. However, it does not change the compressed proof size or the number of symbols in the generated display, so it is not considered a shortening according to conventions 30347. (Contributed by SN, 1-Sep-2024.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
ruvALT {𝑥𝑥𝑥} = V

Proof of Theorem ruvALT
StepHypRef Expression
1 vex 3467 . . . 4 𝑥 ∈ V
2 elirrv 9618 . . . . 5 ¬ 𝑥𝑥
32nelir 3038 . . . 4 𝑥𝑥
41, 32th 264 . . 3 (𝑥 ∈ V ↔ 𝑥𝑥)
54eqabi 2869 . 2 V = {𝑥𝑥𝑥}
65eqcomi 2743 1 {𝑥𝑥𝑥} = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  {cab 2712  wnel 3035  Vcvv 3463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-pr 5412  ax-reg 9614
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-nel 3036  df-ral 3051  df-rex 3060  df-v 3465  df-un 3936  df-sn 4607  df-pr 4609
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator