| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ruvALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of ruv 9561 with one fewer syntax step thanks to using elirrv 9555 instead of elirr 9556. However, it does not change the compressed proof size or the number of symbols in the generated display, so it is not considered a shortening according to conventions 30335. (Contributed by SN, 1-Sep-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| ruvALT | ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3454 | . . . 4 ⊢ 𝑥 ∈ V | |
| 2 | elirrv 9555 | . . . . 5 ⊢ ¬ 𝑥 ∈ 𝑥 | |
| 3 | 2 | nelir 3033 | . . . 4 ⊢ 𝑥 ∉ 𝑥 |
| 4 | 1, 3 | 2th 264 | . . 3 ⊢ (𝑥 ∈ V ↔ 𝑥 ∉ 𝑥) |
| 5 | 4 | eqabi 2864 | . 2 ⊢ V = {𝑥 ∣ 𝑥 ∉ 𝑥} |
| 6 | 5 | eqcomi 2739 | 1 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2708 ∉ wnel 3030 Vcvv 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-pr 5389 ax-reg 9551 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nel 3031 df-ral 3046 df-rex 3055 df-v 3452 df-un 3921 df-sn 4592 df-pr 4594 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |