| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ex2rexrot | Structured version Visualization version GIF version | ||
| Description: Rotate two existential quantifiers and two restricted existential quantifiers. (Contributed by AV, 9-Nov-2023.) |
| Ref | Expression |
|---|---|
| 2ex2rexrot | ⊢ (∃𝑥∃𝑦∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∃𝑥∃𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexcom4 3273 | . . 3 ⊢ (∃𝑤 ∈ 𝐵 ∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑤 ∈ 𝐵 ∃𝑦𝜑) | |
| 2 | 1 | rexbii 3084 | . 2 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∃𝑥∃𝑦𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑥∃𝑤 ∈ 𝐵 ∃𝑦𝜑) |
| 3 | rexcom4 3273 | . 2 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑥∃𝑤 ∈ 𝐵 ∃𝑦𝜑 ↔ ∃𝑥∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∃𝑦𝜑) | |
| 4 | rexcom4 3273 | . . . . 5 ⊢ (∃𝑤 ∈ 𝐵 ∃𝑦𝜑 ↔ ∃𝑦∃𝑤 ∈ 𝐵 𝜑) | |
| 5 | 4 | rexbii 3084 | . . . 4 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∃𝑦𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑦∃𝑤 ∈ 𝐵 𝜑) |
| 6 | rexcom4 3273 | . . . 4 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑦∃𝑤 ∈ 𝐵 𝜑 ↔ ∃𝑦∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜑) | |
| 7 | 5, 6 | bitri 275 | . . 3 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∃𝑦𝜑 ↔ ∃𝑦∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜑) |
| 8 | 7 | exbii 1848 | . 2 ⊢ (∃𝑥∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∃𝑦𝜑 ↔ ∃𝑥∃𝑦∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜑) |
| 9 | 2, 3, 8 | 3bitrri 298 | 1 ⊢ (∃𝑥∃𝑦∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∃𝑥∃𝑦𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1779 ∃wrex 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-11 2158 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3062 |
| This theorem is referenced by: satfv1 35390 |
| Copyright terms: Public domain | W3C validator |