Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2ex2rexrot | Structured version Visualization version GIF version |
Description: Rotate two existential quantifiers and two restricted existential quantifiers. (Contributed by AV, 9-Nov-2023.) |
Ref | Expression |
---|---|
2ex2rexrot | ⊢ (∃𝑥∃𝑦∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∃𝑥∃𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom4 3181 | . . 3 ⊢ (∃𝑤 ∈ 𝐵 ∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑤 ∈ 𝐵 ∃𝑦𝜑) | |
2 | 1 | rexbii 3179 | . 2 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∃𝑥∃𝑦𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑥∃𝑤 ∈ 𝐵 ∃𝑦𝜑) |
3 | rexcom4 3181 | . 2 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑥∃𝑤 ∈ 𝐵 ∃𝑦𝜑 ↔ ∃𝑥∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∃𝑦𝜑) | |
4 | rexcom4 3181 | . . . . 5 ⊢ (∃𝑤 ∈ 𝐵 ∃𝑦𝜑 ↔ ∃𝑦∃𝑤 ∈ 𝐵 𝜑) | |
5 | 4 | rexbii 3179 | . . . 4 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∃𝑦𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑦∃𝑤 ∈ 𝐵 𝜑) |
6 | rexcom4 3181 | . . . 4 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑦∃𝑤 ∈ 𝐵 𝜑 ↔ ∃𝑦∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜑) | |
7 | 5, 6 | bitri 274 | . . 3 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∃𝑦𝜑 ↔ ∃𝑦∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜑) |
8 | 7 | exbii 1853 | . 2 ⊢ (∃𝑥∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∃𝑦𝜑 ↔ ∃𝑥∃𝑦∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜑) |
9 | 2, 3, 8 | 3bitrri 297 | 1 ⊢ (∃𝑥∃𝑦∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∃𝑥∃𝑦𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1785 ∃wrex 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-11 2157 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-rex 3071 |
This theorem is referenced by: satfv1 33304 |
Copyright terms: Public domain | W3C validator |