|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 2ex2rexrot | Structured version Visualization version GIF version | ||
| Description: Rotate two existential quantifiers and two restricted existential quantifiers. (Contributed by AV, 9-Nov-2023.) | 
| Ref | Expression | 
|---|---|
| 2ex2rexrot | ⊢ (∃𝑥∃𝑦∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∃𝑥∃𝑦𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rexcom4 3287 | . . 3 ⊢ (∃𝑤 ∈ 𝐵 ∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑤 ∈ 𝐵 ∃𝑦𝜑) | |
| 2 | 1 | rexbii 3093 | . 2 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∃𝑥∃𝑦𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑥∃𝑤 ∈ 𝐵 ∃𝑦𝜑) | 
| 3 | rexcom4 3287 | . 2 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑥∃𝑤 ∈ 𝐵 ∃𝑦𝜑 ↔ ∃𝑥∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∃𝑦𝜑) | |
| 4 | rexcom4 3287 | . . . . 5 ⊢ (∃𝑤 ∈ 𝐵 ∃𝑦𝜑 ↔ ∃𝑦∃𝑤 ∈ 𝐵 𝜑) | |
| 5 | 4 | rexbii 3093 | . . . 4 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∃𝑦𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑦∃𝑤 ∈ 𝐵 𝜑) | 
| 6 | rexcom4 3287 | . . . 4 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑦∃𝑤 ∈ 𝐵 𝜑 ↔ ∃𝑦∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜑) | |
| 7 | 5, 6 | bitri 275 | . . 3 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∃𝑦𝜑 ↔ ∃𝑦∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜑) | 
| 8 | 7 | exbii 1847 | . 2 ⊢ (∃𝑥∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∃𝑦𝜑 ↔ ∃𝑥∃𝑦∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜑) | 
| 9 | 2, 3, 8 | 3bitrri 298 | 1 ⊢ (∃𝑥∃𝑦∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∃𝑥∃𝑦𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∃wex 1778 ∃wrex 3069 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-11 2156 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-rex 3070 | 
| This theorem is referenced by: satfv1 35369 | 
| Copyright terms: Public domain | W3C validator |