MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmspsn Structured version   Visualization version   GIF version

Theorem lsmspsn 20991
Description: Member of subspace sum of spans of singletons. (Contributed by NM, 8-Apr-2015.)
Hypotheses
Ref Expression
lsmspsn.v 𝑉 = (Base‘𝑊)
lsmspsn.a + = (+g𝑊)
lsmspsn.f 𝐹 = (Scalar‘𝑊)
lsmspsn.k 𝐾 = (Base‘𝐹)
lsmspsn.t · = ( ·𝑠𝑊)
lsmspsn.p = (LSSum‘𝑊)
lsmspsn.n 𝑁 = (LSpan‘𝑊)
lsmspsn.w (𝜑𝑊 ∈ LMod)
lsmspsn.x (𝜑𝑋𝑉)
lsmspsn.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lsmspsn (𝜑 → (𝑈 ∈ ((𝑁‘{𝑋}) (𝑁‘{𝑌})) ↔ ∃𝑗𝐾𝑘𝐾 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌))))
Distinct variable groups:   𝑗,𝑘, +   𝑗,𝐹,𝑘   𝑗,𝐾,𝑘   𝑗,𝑁,𝑘   · ,𝑗,𝑘   𝑈,𝑗,𝑘   𝑗,𝑉,𝑘   𝑗,𝑊,𝑘   𝑗,𝑋,𝑘   𝑗,𝑌,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   (𝑗,𝑘)

Proof of Theorem lsmspsn
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmspsn.w . . . 4 (𝜑𝑊 ∈ LMod)
2 lsmspsn.x . . . 4 (𝜑𝑋𝑉)
3 lsmspsn.v . . . . 5 𝑉 = (Base‘𝑊)
4 lsmspsn.n . . . . 5 𝑁 = (LSpan‘𝑊)
53, 4lspsnsubg 20886 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
61, 2, 5syl2anc 584 . . 3 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
7 lsmspsn.y . . . 4 (𝜑𝑌𝑉)
83, 4lspsnsubg 20886 . . . 4 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
91, 7, 8syl2anc 584 . . 3 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
10 lsmspsn.a . . . 4 + = (+g𝑊)
11 lsmspsn.p . . . 4 = (LSSum‘𝑊)
1210, 11lsmelval 19579 . . 3 (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) → (𝑈 ∈ ((𝑁‘{𝑋}) (𝑁‘{𝑌})) ↔ ∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})𝑈 = (𝑣 + 𝑤)))
136, 9, 12syl2anc 584 . 2 (𝜑 → (𝑈 ∈ ((𝑁‘{𝑋}) (𝑁‘{𝑌})) ↔ ∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})𝑈 = (𝑣 + 𝑤)))
14 lsmspsn.f . . . . . . . . . 10 𝐹 = (Scalar‘𝑊)
15 lsmspsn.k . . . . . . . . . 10 𝐾 = (Base‘𝐹)
16 lsmspsn.t . . . . . . . . . 10 · = ( ·𝑠𝑊)
1714, 15, 3, 16, 4ellspsn 20909 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑣 ∈ (𝑁‘{𝑋}) ↔ ∃𝑗𝐾 𝑣 = (𝑗 · 𝑋)))
181, 2, 17syl2anc 584 . . . . . . . 8 (𝜑 → (𝑣 ∈ (𝑁‘{𝑋}) ↔ ∃𝑗𝐾 𝑣 = (𝑗 · 𝑋)))
1914, 15, 3, 16, 4ellspsn 20909 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑤 ∈ (𝑁‘{𝑌}) ↔ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)))
201, 7, 19syl2anc 584 . . . . . . . 8 (𝜑 → (𝑤 ∈ (𝑁‘{𝑌}) ↔ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)))
2118, 20anbi12d 632 . . . . . . 7 (𝜑 → ((𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑤 ∈ (𝑁‘{𝑌})) ↔ (∃𝑗𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌))))
2221biimpa 476 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑤 ∈ (𝑁‘{𝑌}))) → (∃𝑗𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)))
2322biantrurd 532 . . . . 5 ((𝜑 ∧ (𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑤 ∈ (𝑁‘{𝑌}))) → (𝑈 = (𝑣 + 𝑤) ↔ ((∃𝑗𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤))))
24 r19.41v 3167 . . . . . . 7 (∃𝑘𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ (∃𝑘𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))
2524rexbii 3076 . . . . . 6 (∃𝑗𝐾𝑘𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ ∃𝑗𝐾 (∃𝑘𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))
26 r19.41v 3167 . . . . . 6 (∃𝑗𝐾 (∃𝑘𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ (∃𝑗𝐾𝑘𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))
27 reeanv 3209 . . . . . . 7 (∃𝑗𝐾𝑘𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ↔ (∃𝑗𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)))
2827anbi1i 624 . . . . . 6 ((∃𝑗𝐾𝑘𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ ((∃𝑗𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))
2925, 26, 283bitrri 298 . . . . 5 (((∃𝑗𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ ∃𝑗𝐾𝑘𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))
3023, 29bitrdi 287 . . . 4 ((𝜑 ∧ (𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑤 ∈ (𝑁‘{𝑌}))) → (𝑈 = (𝑣 + 𝑤) ↔ ∃𝑗𝐾𝑘𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤))))
31302rexbidva 3200 . . 3 (𝜑 → (∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})𝑈 = (𝑣 + 𝑤) ↔ ∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})∃𝑗𝐾𝑘𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤))))
32 rexrot4 3272 . . 3 (∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})∃𝑗𝐾𝑘𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ ∃𝑗𝐾𝑘𝐾𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))
3331, 32bitrdi 287 . 2 (𝜑 → (∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})𝑈 = (𝑣 + 𝑤) ↔ ∃𝑗𝐾𝑘𝐾𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤))))
341adantr 480 . . . . 5 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → 𝑊 ∈ LMod)
35 simprl 770 . . . . 5 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → 𝑗𝐾)
362adantr 480 . . . . 5 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → 𝑋𝑉)
373, 16, 14, 15, 4, 34, 35, 36ellspsni 20907 . . . 4 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → (𝑗 · 𝑋) ∈ (𝑁‘{𝑋}))
38 simprr 772 . . . . 5 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → 𝑘𝐾)
397adantr 480 . . . . 5 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → 𝑌𝑉)
403, 16, 14, 15, 4, 34, 38, 39ellspsni 20907 . . . 4 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → (𝑘 · 𝑌) ∈ (𝑁‘{𝑌}))
41 oveq1 7394 . . . . . 6 (𝑣 = (𝑗 · 𝑋) → (𝑣 + 𝑤) = ((𝑗 · 𝑋) + 𝑤))
4241eqeq2d 2740 . . . . 5 (𝑣 = (𝑗 · 𝑋) → (𝑈 = (𝑣 + 𝑤) ↔ 𝑈 = ((𝑗 · 𝑋) + 𝑤)))
43 oveq2 7395 . . . . . 6 (𝑤 = (𝑘 · 𝑌) → ((𝑗 · 𝑋) + 𝑤) = ((𝑗 · 𝑋) + (𝑘 · 𝑌)))
4443eqeq2d 2740 . . . . 5 (𝑤 = (𝑘 · 𝑌) → (𝑈 = ((𝑗 · 𝑋) + 𝑤) ↔ 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌))))
4542, 44ceqsrex2v 3624 . . . 4 (((𝑗 · 𝑋) ∈ (𝑁‘{𝑋}) ∧ (𝑘 · 𝑌) ∈ (𝑁‘{𝑌})) → (∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌))))
4637, 40, 45syl2anc 584 . . 3 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → (∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌))))
47462rexbidva 3200 . 2 (𝜑 → (∃𝑗𝐾𝑘𝐾𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ ∃𝑗𝐾𝑘𝐾 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌))))
4813, 33, 473bitrd 305 1 (𝜑 → (𝑈 ∈ ((𝑁‘{𝑋}) (𝑁‘{𝑌})) ↔ ∃𝑗𝐾𝑘𝐾 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  {csn 4589  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  Scalarcsca 17223   ·𝑠 cvsca 17224  SubGrpcsubg 19052  LSSumclsm 19564  LModclmod 20766  LSpanclspn 20877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-lsm 19566  df-mgp 20050  df-ur 20091  df-ring 20144  df-lmod 20768  df-lss 20838  df-lsp 20878
This theorem is referenced by:  lsppr  21000  baerlem3lem2  41704  baerlem5alem2  41705  baerlem5blem2  41706
  Copyright terms: Public domain W3C validator