MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmspsn Structured version   Visualization version   GIF version

Theorem lsmspsn 20688
Description: Member of subspace sum of spans of singletons. (Contributed by NM, 8-Apr-2015.)
Hypotheses
Ref Expression
lsmspsn.v 𝑉 = (Base‘𝑊)
lsmspsn.a + = (+g𝑊)
lsmspsn.f 𝐹 = (Scalar‘𝑊)
lsmspsn.k 𝐾 = (Base‘𝐹)
lsmspsn.t · = ( ·𝑠𝑊)
lsmspsn.p = (LSSum‘𝑊)
lsmspsn.n 𝑁 = (LSpan‘𝑊)
lsmspsn.w (𝜑𝑊 ∈ LMod)
lsmspsn.x (𝜑𝑋𝑉)
lsmspsn.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lsmspsn (𝜑 → (𝑈 ∈ ((𝑁‘{𝑋}) (𝑁‘{𝑌})) ↔ ∃𝑗𝐾𝑘𝐾 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌))))
Distinct variable groups:   𝑗,𝑘, +   𝑗,𝐹,𝑘   𝑗,𝐾,𝑘   𝑗,𝑁,𝑘   · ,𝑗,𝑘   𝑈,𝑗,𝑘   𝑗,𝑉,𝑘   𝑗,𝑊,𝑘   𝑗,𝑋,𝑘   𝑗,𝑌,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   (𝑗,𝑘)

Proof of Theorem lsmspsn
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmspsn.w . . . 4 (𝜑𝑊 ∈ LMod)
2 lsmspsn.x . . . 4 (𝜑𝑋𝑉)
3 lsmspsn.v . . . . 5 𝑉 = (Base‘𝑊)
4 lsmspsn.n . . . . 5 𝑁 = (LSpan‘𝑊)
53, 4lspsnsubg 20584 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
61, 2, 5syl2anc 585 . . 3 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
7 lsmspsn.y . . . 4 (𝜑𝑌𝑉)
83, 4lspsnsubg 20584 . . . 4 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
91, 7, 8syl2anc 585 . . 3 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
10 lsmspsn.a . . . 4 + = (+g𝑊)
11 lsmspsn.p . . . 4 = (LSSum‘𝑊)
1210, 11lsmelval 19512 . . 3 (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) → (𝑈 ∈ ((𝑁‘{𝑋}) (𝑁‘{𝑌})) ↔ ∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})𝑈 = (𝑣 + 𝑤)))
136, 9, 12syl2anc 585 . 2 (𝜑 → (𝑈 ∈ ((𝑁‘{𝑋}) (𝑁‘{𝑌})) ↔ ∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})𝑈 = (𝑣 + 𝑤)))
14 lsmspsn.f . . . . . . . . . 10 𝐹 = (Scalar‘𝑊)
15 lsmspsn.k . . . . . . . . . 10 𝐾 = (Base‘𝐹)
16 lsmspsn.t . . . . . . . . . 10 · = ( ·𝑠𝑊)
1714, 15, 3, 16, 4lspsnel 20607 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑣 ∈ (𝑁‘{𝑋}) ↔ ∃𝑗𝐾 𝑣 = (𝑗 · 𝑋)))
181, 2, 17syl2anc 585 . . . . . . . 8 (𝜑 → (𝑣 ∈ (𝑁‘{𝑋}) ↔ ∃𝑗𝐾 𝑣 = (𝑗 · 𝑋)))
1914, 15, 3, 16, 4lspsnel 20607 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑤 ∈ (𝑁‘{𝑌}) ↔ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)))
201, 7, 19syl2anc 585 . . . . . . . 8 (𝜑 → (𝑤 ∈ (𝑁‘{𝑌}) ↔ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)))
2118, 20anbi12d 632 . . . . . . 7 (𝜑 → ((𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑤 ∈ (𝑁‘{𝑌})) ↔ (∃𝑗𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌))))
2221biimpa 478 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑤 ∈ (𝑁‘{𝑌}))) → (∃𝑗𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)))
2322biantrurd 534 . . . . 5 ((𝜑 ∧ (𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑤 ∈ (𝑁‘{𝑌}))) → (𝑈 = (𝑣 + 𝑤) ↔ ((∃𝑗𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤))))
24 r19.41v 3189 . . . . . . 7 (∃𝑘𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ (∃𝑘𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))
2524rexbii 3095 . . . . . 6 (∃𝑗𝐾𝑘𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ ∃𝑗𝐾 (∃𝑘𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))
26 r19.41v 3189 . . . . . 6 (∃𝑗𝐾 (∃𝑘𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ (∃𝑗𝐾𝑘𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))
27 reeanv 3227 . . . . . . 7 (∃𝑗𝐾𝑘𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ↔ (∃𝑗𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)))
2827anbi1i 625 . . . . . 6 ((∃𝑗𝐾𝑘𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ ((∃𝑗𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))
2925, 26, 283bitrri 298 . . . . 5 (((∃𝑗𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ ∃𝑗𝐾𝑘𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))
3023, 29bitrdi 287 . . . 4 ((𝜑 ∧ (𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑤 ∈ (𝑁‘{𝑌}))) → (𝑈 = (𝑣 + 𝑤) ↔ ∃𝑗𝐾𝑘𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤))))
31302rexbidva 3218 . . 3 (𝜑 → (∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})𝑈 = (𝑣 + 𝑤) ↔ ∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})∃𝑗𝐾𝑘𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤))))
32 rexrot4 3295 . . 3 (∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})∃𝑗𝐾𝑘𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ ∃𝑗𝐾𝑘𝐾𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))
3331, 32bitrdi 287 . 2 (𝜑 → (∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})𝑈 = (𝑣 + 𝑤) ↔ ∃𝑗𝐾𝑘𝐾𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤))))
341adantr 482 . . . . 5 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → 𝑊 ∈ LMod)
35 simprl 770 . . . . 5 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → 𝑗𝐾)
362adantr 482 . . . . 5 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → 𝑋𝑉)
373, 16, 14, 15, 4, 34, 35, 36lspsneli 20605 . . . 4 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → (𝑗 · 𝑋) ∈ (𝑁‘{𝑋}))
38 simprr 772 . . . . 5 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → 𝑘𝐾)
397adantr 482 . . . . 5 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → 𝑌𝑉)
403, 16, 14, 15, 4, 34, 38, 39lspsneli 20605 . . . 4 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → (𝑘 · 𝑌) ∈ (𝑁‘{𝑌}))
41 oveq1 7413 . . . . . 6 (𝑣 = (𝑗 · 𝑋) → (𝑣 + 𝑤) = ((𝑗 · 𝑋) + 𝑤))
4241eqeq2d 2744 . . . . 5 (𝑣 = (𝑗 · 𝑋) → (𝑈 = (𝑣 + 𝑤) ↔ 𝑈 = ((𝑗 · 𝑋) + 𝑤)))
43 oveq2 7414 . . . . . 6 (𝑤 = (𝑘 · 𝑌) → ((𝑗 · 𝑋) + 𝑤) = ((𝑗 · 𝑋) + (𝑘 · 𝑌)))
4443eqeq2d 2744 . . . . 5 (𝑤 = (𝑘 · 𝑌) → (𝑈 = ((𝑗 · 𝑋) + 𝑤) ↔ 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌))))
4542, 44ceqsrex2v 3646 . . . 4 (((𝑗 · 𝑋) ∈ (𝑁‘{𝑋}) ∧ (𝑘 · 𝑌) ∈ (𝑁‘{𝑌})) → (∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌))))
4637, 40, 45syl2anc 585 . . 3 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → (∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌))))
47462rexbidva 3218 . 2 (𝜑 → (∃𝑗𝐾𝑘𝐾𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ ∃𝑗𝐾𝑘𝐾 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌))))
4813, 33, 473bitrd 305 1 (𝜑 → (𝑈 ∈ ((𝑁‘{𝑋}) (𝑁‘{𝑌})) ↔ ∃𝑗𝐾𝑘𝐾 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wrex 3071  {csn 4628  cfv 6541  (class class class)co 7406  Basecbs 17141  +gcplusg 17194  Scalarcsca 17197   ·𝑠 cvsca 17198  SubGrpcsubg 18995  LSSumclsm 19497  LModclmod 20464  LSpanclspn 20575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-1st 7972  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17142  df-ress 17171  df-plusg 17207  df-0g 17384  df-mgm 18558  df-sgrp 18607  df-mnd 18623  df-grp 18819  df-minusg 18820  df-sbg 18821  df-subg 18998  df-lsm 19499  df-mgp 19983  df-ur 20000  df-ring 20052  df-lmod 20466  df-lss 20536  df-lsp 20576
This theorem is referenced by:  lsppr  20697  baerlem3lem2  40570  baerlem5alem2  40571  baerlem5blem2  40572
  Copyright terms: Public domain W3C validator