MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmspsn Structured version   Visualization version   GIF version

Theorem lsmspsn 21042
Description: Member of subspace sum of spans of singletons. (Contributed by NM, 8-Apr-2015.)
Hypotheses
Ref Expression
lsmspsn.v 𝑉 = (Base‘𝑊)
lsmspsn.a + = (+g𝑊)
lsmspsn.f 𝐹 = (Scalar‘𝑊)
lsmspsn.k 𝐾 = (Base‘𝐹)
lsmspsn.t · = ( ·𝑠𝑊)
lsmspsn.p = (LSSum‘𝑊)
lsmspsn.n 𝑁 = (LSpan‘𝑊)
lsmspsn.w (𝜑𝑊 ∈ LMod)
lsmspsn.x (𝜑𝑋𝑉)
lsmspsn.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lsmspsn (𝜑 → (𝑈 ∈ ((𝑁‘{𝑋}) (𝑁‘{𝑌})) ↔ ∃𝑗𝐾𝑘𝐾 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌))))
Distinct variable groups:   𝑗,𝑘, +   𝑗,𝐹,𝑘   𝑗,𝐾,𝑘   𝑗,𝑁,𝑘   · ,𝑗,𝑘   𝑈,𝑗,𝑘   𝑗,𝑉,𝑘   𝑗,𝑊,𝑘   𝑗,𝑋,𝑘   𝑗,𝑌,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   (𝑗,𝑘)

Proof of Theorem lsmspsn
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmspsn.w . . . 4 (𝜑𝑊 ∈ LMod)
2 lsmspsn.x . . . 4 (𝜑𝑋𝑉)
3 lsmspsn.v . . . . 5 𝑉 = (Base‘𝑊)
4 lsmspsn.n . . . . 5 𝑁 = (LSpan‘𝑊)
53, 4lspsnsubg 20937 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
61, 2, 5syl2anc 584 . . 3 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
7 lsmspsn.y . . . 4 (𝜑𝑌𝑉)
83, 4lspsnsubg 20937 . . . 4 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
91, 7, 8syl2anc 584 . . 3 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
10 lsmspsn.a . . . 4 + = (+g𝑊)
11 lsmspsn.p . . . 4 = (LSSum‘𝑊)
1210, 11lsmelval 19630 . . 3 (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) → (𝑈 ∈ ((𝑁‘{𝑋}) (𝑁‘{𝑌})) ↔ ∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})𝑈 = (𝑣 + 𝑤)))
136, 9, 12syl2anc 584 . 2 (𝜑 → (𝑈 ∈ ((𝑁‘{𝑋}) (𝑁‘{𝑌})) ↔ ∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})𝑈 = (𝑣 + 𝑤)))
14 lsmspsn.f . . . . . . . . . 10 𝐹 = (Scalar‘𝑊)
15 lsmspsn.k . . . . . . . . . 10 𝐾 = (Base‘𝐹)
16 lsmspsn.t . . . . . . . . . 10 · = ( ·𝑠𝑊)
1714, 15, 3, 16, 4ellspsn 20960 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑣 ∈ (𝑁‘{𝑋}) ↔ ∃𝑗𝐾 𝑣 = (𝑗 · 𝑋)))
181, 2, 17syl2anc 584 . . . . . . . 8 (𝜑 → (𝑣 ∈ (𝑁‘{𝑋}) ↔ ∃𝑗𝐾 𝑣 = (𝑗 · 𝑋)))
1914, 15, 3, 16, 4ellspsn 20960 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑤 ∈ (𝑁‘{𝑌}) ↔ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)))
201, 7, 19syl2anc 584 . . . . . . . 8 (𝜑 → (𝑤 ∈ (𝑁‘{𝑌}) ↔ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)))
2118, 20anbi12d 632 . . . . . . 7 (𝜑 → ((𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑤 ∈ (𝑁‘{𝑌})) ↔ (∃𝑗𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌))))
2221biimpa 476 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑤 ∈ (𝑁‘{𝑌}))) → (∃𝑗𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)))
2322biantrurd 532 . . . . 5 ((𝜑 ∧ (𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑤 ∈ (𝑁‘{𝑌}))) → (𝑈 = (𝑣 + 𝑤) ↔ ((∃𝑗𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤))))
24 r19.41v 3174 . . . . . . 7 (∃𝑘𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ (∃𝑘𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))
2524rexbii 3083 . . . . . 6 (∃𝑗𝐾𝑘𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ ∃𝑗𝐾 (∃𝑘𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))
26 r19.41v 3174 . . . . . 6 (∃𝑗𝐾 (∃𝑘𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ (∃𝑗𝐾𝑘𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))
27 reeanv 3213 . . . . . . 7 (∃𝑗𝐾𝑘𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ↔ (∃𝑗𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)))
2827anbi1i 624 . . . . . 6 ((∃𝑗𝐾𝑘𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ ((∃𝑗𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))
2925, 26, 283bitrri 298 . . . . 5 (((∃𝑗𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ ∃𝑗𝐾𝑘𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))
3023, 29bitrdi 287 . . . 4 ((𝜑 ∧ (𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑤 ∈ (𝑁‘{𝑌}))) → (𝑈 = (𝑣 + 𝑤) ↔ ∃𝑗𝐾𝑘𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤))))
31302rexbidva 3204 . . 3 (𝜑 → (∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})𝑈 = (𝑣 + 𝑤) ↔ ∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})∃𝑗𝐾𝑘𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤))))
32 rexrot4 3278 . . 3 (∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})∃𝑗𝐾𝑘𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ ∃𝑗𝐾𝑘𝐾𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))
3331, 32bitrdi 287 . 2 (𝜑 → (∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})𝑈 = (𝑣 + 𝑤) ↔ ∃𝑗𝐾𝑘𝐾𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤))))
341adantr 480 . . . . 5 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → 𝑊 ∈ LMod)
35 simprl 770 . . . . 5 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → 𝑗𝐾)
362adantr 480 . . . . 5 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → 𝑋𝑉)
373, 16, 14, 15, 4, 34, 35, 36ellspsni 20958 . . . 4 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → (𝑗 · 𝑋) ∈ (𝑁‘{𝑋}))
38 simprr 772 . . . . 5 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → 𝑘𝐾)
397adantr 480 . . . . 5 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → 𝑌𝑉)
403, 16, 14, 15, 4, 34, 38, 39ellspsni 20958 . . . 4 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → (𝑘 · 𝑌) ∈ (𝑁‘{𝑌}))
41 oveq1 7412 . . . . . 6 (𝑣 = (𝑗 · 𝑋) → (𝑣 + 𝑤) = ((𝑗 · 𝑋) + 𝑤))
4241eqeq2d 2746 . . . . 5 (𝑣 = (𝑗 · 𝑋) → (𝑈 = (𝑣 + 𝑤) ↔ 𝑈 = ((𝑗 · 𝑋) + 𝑤)))
43 oveq2 7413 . . . . . 6 (𝑤 = (𝑘 · 𝑌) → ((𝑗 · 𝑋) + 𝑤) = ((𝑗 · 𝑋) + (𝑘 · 𝑌)))
4443eqeq2d 2746 . . . . 5 (𝑤 = (𝑘 · 𝑌) → (𝑈 = ((𝑗 · 𝑋) + 𝑤) ↔ 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌))))
4542, 44ceqsrex2v 3637 . . . 4 (((𝑗 · 𝑋) ∈ (𝑁‘{𝑋}) ∧ (𝑘 · 𝑌) ∈ (𝑁‘{𝑌})) → (∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌))))
4637, 40, 45syl2anc 584 . . 3 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → (∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌))))
47462rexbidva 3204 . 2 (𝜑 → (∃𝑗𝐾𝑘𝐾𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ ∃𝑗𝐾𝑘𝐾 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌))))
4813, 33, 473bitrd 305 1 (𝜑 → (𝑈 ∈ ((𝑁‘{𝑋}) (𝑁‘{𝑌})) ↔ ∃𝑗𝐾𝑘𝐾 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3060  {csn 4601  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  Scalarcsca 17274   ·𝑠 cvsca 17275  SubGrpcsubg 19103  LSSumclsm 19615  LModclmod 20817  LSpanclspn 20928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-lsm 19617  df-mgp 20101  df-ur 20142  df-ring 20195  df-lmod 20819  df-lss 20889  df-lsp 20929
This theorem is referenced by:  lsppr  21051  baerlem3lem2  41729  baerlem5alem2  41730  baerlem5blem2  41731
  Copyright terms: Public domain W3C validator