| Step | Hyp | Ref
| Expression |
| 1 | | lsmspsn.w |
. . . 4
⊢ (𝜑 → 𝑊 ∈ LMod) |
| 2 | | lsmspsn.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 3 | | lsmspsn.v |
. . . . 5
⊢ 𝑉 = (Base‘𝑊) |
| 4 | | lsmspsn.n |
. . . . 5
⊢ 𝑁 = (LSpan‘𝑊) |
| 5 | 3, 4 | lspsnsubg 20978 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
| 6 | 1, 2, 5 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
| 7 | | lsmspsn.y |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 8 | 3, 4 | lspsnsubg 20978 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) |
| 9 | 1, 7, 8 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) |
| 10 | | lsmspsn.a |
. . . 4
⊢ + =
(+g‘𝑊) |
| 11 | | lsmspsn.p |
. . . 4
⊢ ⊕ =
(LSSum‘𝑊) |
| 12 | 10, 11 | lsmelval 19667 |
. . 3
⊢ (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) → (𝑈 ∈ ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ↔ ∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})𝑈 = (𝑣 + 𝑤))) |
| 13 | 6, 9, 12 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝑈 ∈ ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ↔ ∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})𝑈 = (𝑣 + 𝑤))) |
| 14 | | lsmspsn.f |
. . . . . . . . . 10
⊢ 𝐹 = (Scalar‘𝑊) |
| 15 | | lsmspsn.k |
. . . . . . . . . 10
⊢ 𝐾 = (Base‘𝐹) |
| 16 | | lsmspsn.t |
. . . . . . . . . 10
⊢ · = (
·𝑠 ‘𝑊) |
| 17 | 14, 15, 3, 16, 4 | ellspsn 21001 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑣 ∈ (𝑁‘{𝑋}) ↔ ∃𝑗 ∈ 𝐾 𝑣 = (𝑗 · 𝑋))) |
| 18 | 1, 2, 17 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝑣 ∈ (𝑁‘{𝑋}) ↔ ∃𝑗 ∈ 𝐾 𝑣 = (𝑗 · 𝑋))) |
| 19 | 14, 15, 3, 16, 4 | ellspsn 21001 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑤 ∈ (𝑁‘{𝑌}) ↔ ∃𝑘 ∈ 𝐾 𝑤 = (𝑘 · 𝑌))) |
| 20 | 1, 7, 19 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝑤 ∈ (𝑁‘{𝑌}) ↔ ∃𝑘 ∈ 𝐾 𝑤 = (𝑘 · 𝑌))) |
| 21 | 18, 20 | anbi12d 632 |
. . . . . . 7
⊢ (𝜑 → ((𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑤 ∈ (𝑁‘{𝑌})) ↔ (∃𝑗 ∈ 𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘 ∈ 𝐾 𝑤 = (𝑘 · 𝑌)))) |
| 22 | 21 | biimpa 476 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑤 ∈ (𝑁‘{𝑌}))) → (∃𝑗 ∈ 𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘 ∈ 𝐾 𝑤 = (𝑘 · 𝑌))) |
| 23 | 22 | biantrurd 532 |
. . . . 5
⊢ ((𝜑 ∧ (𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑤 ∈ (𝑁‘{𝑌}))) → (𝑈 = (𝑣 + 𝑤) ↔ ((∃𝑗 ∈ 𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘 ∈ 𝐾 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))) |
| 24 | | r19.41v 3189 |
. . . . . . 7
⊢
(∃𝑘 ∈
𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ (∃𝑘 ∈ 𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤))) |
| 25 | 24 | rexbii 3094 |
. . . . . 6
⊢
(∃𝑗 ∈
𝐾 ∃𝑘 ∈ 𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ ∃𝑗 ∈ 𝐾 (∃𝑘 ∈ 𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤))) |
| 26 | | r19.41v 3189 |
. . . . . 6
⊢
(∃𝑗 ∈
𝐾 (∃𝑘 ∈ 𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ (∃𝑗 ∈ 𝐾 ∃𝑘 ∈ 𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤))) |
| 27 | | reeanv 3229 |
. . . . . . 7
⊢
(∃𝑗 ∈
𝐾 ∃𝑘 ∈ 𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ↔ (∃𝑗 ∈ 𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘 ∈ 𝐾 𝑤 = (𝑘 · 𝑌))) |
| 28 | 27 | anbi1i 624 |
. . . . . 6
⊢
((∃𝑗 ∈
𝐾 ∃𝑘 ∈ 𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ ((∃𝑗 ∈ 𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘 ∈ 𝐾 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤))) |
| 29 | 25, 26, 28 | 3bitrri 298 |
. . . . 5
⊢
(((∃𝑗 ∈
𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘 ∈ 𝐾 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ ∃𝑗 ∈ 𝐾 ∃𝑘 ∈ 𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤))) |
| 30 | 23, 29 | bitrdi 287 |
. . . 4
⊢ ((𝜑 ∧ (𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑤 ∈ (𝑁‘{𝑌}))) → (𝑈 = (𝑣 + 𝑤) ↔ ∃𝑗 ∈ 𝐾 ∃𝑘 ∈ 𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))) |
| 31 | 30 | 2rexbidva 3220 |
. . 3
⊢ (𝜑 → (∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})𝑈 = (𝑣 + 𝑤) ↔ ∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})∃𝑗 ∈ 𝐾 ∃𝑘 ∈ 𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))) |
| 32 | | rexrot4 3297 |
. . 3
⊢
(∃𝑣 ∈
(𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})∃𝑗 ∈ 𝐾 ∃𝑘 ∈ 𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ ∃𝑗 ∈ 𝐾 ∃𝑘 ∈ 𝐾 ∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤))) |
| 33 | 31, 32 | bitrdi 287 |
. 2
⊢ (𝜑 → (∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})𝑈 = (𝑣 + 𝑤) ↔ ∃𝑗 ∈ 𝐾 ∃𝑘 ∈ 𝐾 ∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))) |
| 34 | 1 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾)) → 𝑊 ∈ LMod) |
| 35 | | simprl 771 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾)) → 𝑗 ∈ 𝐾) |
| 36 | 2 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾)) → 𝑋 ∈ 𝑉) |
| 37 | 3, 16, 14, 15, 4, 34, 35, 36 | ellspsni 20999 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾)) → (𝑗 · 𝑋) ∈ (𝑁‘{𝑋})) |
| 38 | | simprr 773 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾)) → 𝑘 ∈ 𝐾) |
| 39 | 7 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾)) → 𝑌 ∈ 𝑉) |
| 40 | 3, 16, 14, 15, 4, 34, 38, 39 | ellspsni 20999 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾)) → (𝑘 · 𝑌) ∈ (𝑁‘{𝑌})) |
| 41 | | oveq1 7438 |
. . . . . 6
⊢ (𝑣 = (𝑗 · 𝑋) → (𝑣 + 𝑤) = ((𝑗 · 𝑋) + 𝑤)) |
| 42 | 41 | eqeq2d 2748 |
. . . . 5
⊢ (𝑣 = (𝑗 · 𝑋) → (𝑈 = (𝑣 + 𝑤) ↔ 𝑈 = ((𝑗 · 𝑋) + 𝑤))) |
| 43 | | oveq2 7439 |
. . . . . 6
⊢ (𝑤 = (𝑘 · 𝑌) → ((𝑗 · 𝑋) + 𝑤) = ((𝑗 · 𝑋) + (𝑘 · 𝑌))) |
| 44 | 43 | eqeq2d 2748 |
. . . . 5
⊢ (𝑤 = (𝑘 · 𝑌) → (𝑈 = ((𝑗 · 𝑋) + 𝑤) ↔ 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌)))) |
| 45 | 42, 44 | ceqsrex2v 3658 |
. . . 4
⊢ (((𝑗 · 𝑋) ∈ (𝑁‘{𝑋}) ∧ (𝑘 · 𝑌) ∈ (𝑁‘{𝑌})) → (∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌)))) |
| 46 | 37, 40, 45 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾)) → (∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌)))) |
| 47 | 46 | 2rexbidva 3220 |
. 2
⊢ (𝜑 → (∃𝑗 ∈ 𝐾 ∃𝑘 ∈ 𝐾 ∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ ∃𝑗 ∈ 𝐾 ∃𝑘 ∈ 𝐾 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌)))) |
| 48 | 13, 33, 47 | 3bitrd 305 |
1
⊢ (𝜑 → (𝑈 ∈ ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ↔ ∃𝑗 ∈ 𝐾 ∃𝑘 ∈ 𝐾 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌)))) |