MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmoeqd Structured version   Visualization version   GIF version

Theorem rmoeqd 3429
Description: Equality deduction for restricted at-most-one quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Hypothesis
Ref Expression
rmoeqd.1 (𝐴 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
rmoeqd (𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem rmoeqd
StepHypRef Expression
1 rmoeq1 3425 . 2 (𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜑))
2 rmoeqd.1 . . 3 (𝐴 = 𝐵 → (𝜑𝜓))
32rmobidv 3405 . 2 (𝐴 = 𝐵 → (∃*𝑥𝐵 𝜑 ↔ ∃*𝑥𝐵 𝜓))
41, 3bitrd 279 1 (𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  ∃*wrmo 3387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-mo 2543  df-cleq 2732  df-rmo 3388
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator