| Metamath
Proof Explorer Theorem List (p. 35 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | cbvrmo 3401* | Change the bound variable of a restricted at-most-one quantifier using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2371. Use the weaker cbvrmow 3383, cbvrmovw 3379 when possible. (Contributed by NM, 16-Jun-2017.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvrmov 3402* | Change the bound variable of a restricted at-most-one quantifier using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by Alexander van der Vekens, 17-Jun-2017.) (New usage is discouraged.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvreuv 3403* | Change the bound variable of a restricted unique existential quantifier using implicit substitution. See cbvreuvw 3380 for a version without ax-13 2371, but extra disjoint variables. Usage of this theorem is discouraged because it depends on ax-13 2371. Use the weaker cbvreuvw 3380 when possible. (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) (New usage is discouraged.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | nfrmod 3404 | Deduction version of nfrmo 3406. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 17-Jun-2017.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∃*𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | nfreud 3405 | Deduction version of nfreu 3407. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 8-Oct-2016.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | nfrmo 3406 | Bound-variable hypothesis builder for restricted uniqueness. Usage of this theorem is discouraged because it depends on ax-13 2371. Use the weaker nfrmow 3387 when possible. (Contributed by NM, 16-Jun-2017.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∃*𝑦 ∈ 𝐴 𝜑 | ||
| Theorem | nfreu 3407 | Bound-variable hypothesis builder for restricted unique existence. Usage of this theorem is discouraged because it depends on ax-13 2371. Use the weaker nfreuw 3388 when possible. (Contributed by NM, 30-Oct-2010.) (Revised by Mario Carneiro, 8-Oct-2016.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜑 | ||
| Syntax | crab 3408 | Extend class notation to include the restricted class abstraction (class builder). |
| class {𝑥 ∈ 𝐴 ∣ 𝜑} | ||
| Definition | df-rab 3409 |
Define a restricted class abstraction (class builder): {𝑥 ∈ 𝐴 ∣ 𝜑}
is the class of all sets 𝑥 in 𝐴 such that 𝜑(𝑥) is true.
Definition of [TakeutiZaring] p.
20.
For the interpretation given in the previous paragraph to be correct, we need to assume Ⅎ𝑥𝐴, which is the case as soon as 𝑥 and 𝐴 are disjoint, which is generally the case. If 𝐴 were to depend on 𝑥, then the interpretation would be less obvious (think of the two extreme cases 𝐴 = {𝑥} and 𝐴 = 𝑥, for instance). See also df-ral 3046. (Contributed by NM, 22-Nov-1994.) |
| ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | ||
| Theorem | rabbidva2 3410* | Equivalent wff's yield equal restricted class abstractions. (Contributed by Thierry Arnoux, 4-Feb-2017.) |
| ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) | ||
| Theorem | rabbia2 3411 | Equivalent wff's yield equal restricted class abstractions. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒} | ||
| Theorem | rabbiia 3412 | Equivalent formulas yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.) (Proof shortened by Wolf Lammen, 12-Jan-2025.) |
| ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} | ||
| Theorem | rabbiiaOLD 3413 | Obsolete version of rabbiia 3412 as of 12-Jan-2025. (Contributed by NM, 22-May-1999.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} | ||
| Theorem | rabbii 3414 | Equivalent wff's correspond to equal restricted class abstractions. Inference form of rabbidv 3416. (Contributed by Peter Mazsa, 1-Nov-2019.) |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} | ||
| Theorem | rabbidva 3415* | Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 28-Nov-2003.) (Proof shortened by SN, 3-Dec-2023.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
| Theorem | rabbidv 3416* | Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 10-Feb-1995.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
| Theorem | rabbieq 3417 | Equivalent wff's correspond to restricted class abstractions which are equal with the same class. (Contributed by Peter Mazsa, 8-Jul-2019.) |
| ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} & ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} | ||
| Theorem | rabswap 3418 | Swap with a membership relation in a restricted class abstraction. (Contributed by NM, 4-Jul-2005.) |
| ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐴} | ||
| Theorem | cbvrabv 3419* | Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999.) Require 𝑥, 𝑦 be disjoint to avoid ax-11 2158 and ax-13 2371. (Revised by Steven Nguyen, 4-Dec-2022.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} | ||
| Theorem | rabeqcda 3420* | When 𝜓 is always true in a context, a restricted class abstraction is equal to the restricting class. Deduction form of rabeqc 3421. (Contributed by Steven Nguyen, 7-Jun-2023.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = 𝐴) | ||
| Theorem | rabeqc 3421* | A restricted class abstraction equals the restricting class if its condition follows from the membership of the free setvar variable in the restricting class. (Contributed by AV, 20-Apr-2022.) (Proof shortened by SN, 15-Jan-2025.) |
| ⊢ (𝑥 ∈ 𝐴 → 𝜑) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = 𝐴 | ||
| Theorem | rabeqi 3422 | Equality theorem for restricted class abstractions. Inference form of rabeqf 3443. (Contributed by Glauco Siliprandi, 26-Jun-2021.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by GG, 3-Jun-2024.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} | ||
| Theorem | rabeq 3423* | Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by GG, 20-Aug-2023.) |
| ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) | ||
| Theorem | rabeqdv 3424* | Equality of restricted class abstractions. Deduction form of rabeq 3423. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) | ||
| Theorem | rabeqbidva 3425* | Equality of restricted class abstractions. (Contributed by Mario Carneiro, 26-Jan-2017.) Remove DV conditions. (Revised by GG, 1-Sep-2025.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) | ||
| Theorem | rabeqbidvaOLD 3426* | Obsolete version of rabeqbidva 3425 as of 1-Sep-2025. (Contributed by Mario Carneiro, 26-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) | ||
| Theorem | rabeqbidv 3427* | Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) | ||
| Theorem | rabrabi 3428* | Abstract builder restricted to another restricted abstract builder with implicit substitution. (Contributed by AV, 2-Aug-2022.) Avoid ax-10 2142, ax-11 2158 and ax-12 2178. (Revised by GG, 12-Oct-2024.) |
| ⊢ (𝑥 = 𝑦 → (𝜒 ↔ 𝜑)) ⇒ ⊢ {𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ (𝜒 ∧ 𝜓)} | ||
| Theorem | nfrab1 3429 | The abstraction variable in a restricted class abstraction isn't free. (Contributed by NM, 19-Mar-1997.) |
| ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝜑} | ||
| Theorem | rabid 3430 | An "identity" law of concretion for restricted abstraction. Special case of Definition 2.1 of [Quine] p. 16. (Contributed by NM, 9-Oct-2003.) |
| ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | ||
| Theorem | rabidim1 3431 | Membership in a restricted abstraction, implication. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝑥 ∈ 𝐴) | ||
| Theorem | reqabi 3432 | Inference from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.) |
| ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} ⇒ ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) | ||
| Theorem | rabrab 3433 | Abstract builder restricted to another restricted abstract builder. (Contributed by Thierry Arnoux, 30-Aug-2017.) |
| ⊢ {𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} | ||
| Theorem | rabbida4 3434 | Version of rabbidva2 3410 with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) | ||
| Theorem | rabbida 3435 | Equivalent wff's yield equal restricted class abstractions (deduction form). Version of rabbidva 3415 with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.) Avoid ax-10 2142, ax-11 2158. (Revised by Wolf Lammen, 14-Mar-2025.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
| Theorem | rabbid 3436 | Version of rabbidv 3416 with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
| Theorem | rabeqd 3437 | Deduction form of rabeq 3423. Note that contrary to rabeq 3423 it has no disjoint variable condition. (Contributed by BJ, 27-Apr-2019.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) | ||
| Theorem | rabeqbida 3438 | Version of rabeqbidva 3425 with two disjoint variable conditions removed and the third replaced by a nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) | ||
| Theorem | rabbi 3439 | Equivalent wff's correspond to equal restricted class abstractions. Closed theorem form of rabbii 3414. (Contributed by NM, 25-Nov-2013.) |
| ⊢ (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜒) ↔ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
| Theorem | rabid2f 3440 | An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Revised by Thierry Arnoux, 13-Mar-2017.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | rabid2im 3441* | One direction of rabid2 3442 is based on fewer axioms. (Contributed by Wolf Lammen, 26-May-2025.) |
| ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑}) | ||
| Theorem | rabid2 3442* | An "identity" law for restricted class abstraction. Prefer rabid2im 3441 if one direction is sufficient. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2024.) |
| ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | rabeqf 3443 | Equality theorem for restricted class abstractions, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) | ||
| Theorem | cbvrabw 3444* | Rule to change the bound variable in a restricted class abstraction, using implicit substitution. Version of cbvrab 3449 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by Andrew Salmon, 11-Jul-2011.) Avoid ax-13 2371. (Revised by GG, 10-Jan-2024.) Avoid ax-10 2142. (Revised by Wolf Lammen, 19-Jul-2025.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} | ||
| Theorem | cbvrabwOLD 3445* | Obsolete version of cbvrabw 3444 as of 19-Jul-2025. (Contributed by Andrew Salmon, 11-Jul-2011.) Avoid ax-13 2371. (Revised by GG, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} | ||
| Theorem | nfrabw 3446* | A variable not free in a wff remains so in a restricted class abstraction. Version of nfrab 3448 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by NM, 13-Oct-2003.) Avoid ax-13 2371. (Revised by GG, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 23-Nov-2024.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} | ||
| Theorem | rabbidaOLD 3447 | Obsolete version of rabbida 3435 as of 14-Mar-2025. (Contributed by BJ, 27-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
| Theorem | nfrab 3448 | A variable not free in a wff remains so in a restricted class abstraction. Usage of this theorem is discouraged because it depends on ax-13 2371. Use the weaker nfrabw 3446 when possible. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 9-Oct-2016.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} | ||
| Theorem | cbvrab 3449 | Rule to change the bound variable in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2371. Use the weaker cbvrabw 3444 when possible. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 9-Oct-2016.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} | ||
| Syntax | cvv 3450 | Extend class notation to include the universal class symbol. |
| class V | ||
| Theorem | vjust 3451 | Justification theorem for df-v 3452. (Contributed by Rodolfo Medina, 27-Apr-2010.) |
| ⊢ {𝑥 ∣ 𝑥 = 𝑥} = {𝑦 ∣ 𝑦 = 𝑦} | ||
| Definition | df-v 3452 |
Define the universal class. Definition 5.20 of [TakeutiZaring] p. 21.
Also Definition 2.9 of [Quine] p. 19. The
class V can be described
as the "class of all sets"; vprc 5273
proves that V is not itself a set
in ZF. We will frequently use the expression 𝐴 ∈ V as a short way
to
say "𝐴 is a set", and isset 3464 proves that this expression has the
same meaning as ∃𝑥𝑥 = 𝐴.
In well-founded set theories without urelements, like ZF, the class V is equal to the von Neumann universe. However, the letter "V" does not stand for "von Neumann". The letter "V" was used earlier by Peano in 1889 for the universe of sets, where the letter V is derived from the Latin word "Verum", referring to the true truth constant 𝑇. Peano's notation V was adopted by Whitehead and Russell in Principia Mathematica for the class of all sets in 1910. The class constant V is the first class constant introduced in this database. As a constant, as opposed to a variable, it cannot be substituted with anything, and in particular it is not part of any disjoint variable condition. For a general discussion of the theory of classes, see mmset.html#class 3464. See dfv2 3453 for an alternate definition. (Contributed by NM, 26-May-1993.) |
| ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} | ||
| Theorem | dfv2 3453 | Alternate definition of the universal class (see df-v 3452). (Contributed by BJ, 30-Nov-2019.) |
| ⊢ V = {𝑥 ∣ ⊤} | ||
| Theorem | vex 3454 | All setvar variables are sets (see isset 3464). Theorem 6.8 of [Quine] p. 43. A shorter proof is possible from eleq2i 2821 but it uses more axioms. (Contributed by NM, 26-May-1993.) Remove use of ax-12 2178. (Revised by SN, 28-Aug-2023.) (Proof shortened by BJ, 4-Sep-2024.) |
| ⊢ 𝑥 ∈ V | ||
| Theorem | elv 3455 | If a proposition is implied by 𝑥 ∈ V (which is true, see vex 3454), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.) |
| ⊢ (𝑥 ∈ V → 𝜑) ⇒ ⊢ 𝜑 | ||
| Theorem | elvd 3456 | If a proposition is implied by 𝑥 ∈ V (which is true, see vex 3454) and another antecedent, then it is implied by that other antecedent. Deduction associated with elv 3455. (Contributed by Peter Mazsa, 23-Oct-2018.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ V) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | el2v 3457 | If a proposition is implied by 𝑥 ∈ V and 𝑦 ∈ V (which is true, see vex 3454), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.) |
| ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝜑) ⇒ ⊢ 𝜑 | ||
| Theorem | el3v 3458 | If a proposition is implied by 𝑥 ∈ V, 𝑦 ∈ V and 𝑧 ∈ V (which is true, see vex 3454), then it is true. Inference forms (with ⊢ 𝐴 ∈ V, ⊢ 𝐵 ∈ V and ⊢ 𝐶 ∈ V hypotheses) of the general theorems (proving ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → assertions) may be superfluous. (Contributed by Peter Mazsa, 13-Oct-2018.) |
| ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → 𝜑) ⇒ ⊢ 𝜑 | ||
| Theorem | el3v3 3459 | If a proposition is implied by 𝑧 ∈ V (which is true, see vex 3454) and two other antecedents, then it is implied by these other antecedents. (Contributed by Peter Mazsa, 16-Oct-2020.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ V) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | ||
| Theorem | eqv 3460* | The universe contains every set. (Contributed by NM, 11-Sep-2006.) Remove dependency on ax-10 2142, ax-11 2158, ax-13 2371. (Revised by BJ, 10-Aug-2022.) |
| ⊢ (𝐴 = V ↔ ∀𝑥 𝑥 ∈ 𝐴) | ||
| Theorem | eqvf 3461 | The universe contains every set. (Contributed by BJ, 15-Jul-2021.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 = V ↔ ∀𝑥 𝑥 ∈ 𝐴) | ||
| Theorem | abv 3462 | The class of sets verifying a property is the universal class if and only if that property is a tautology. The reverse implication (bj-abv 36901) requires fewer axioms. (Contributed by BJ, 19-Mar-2021.) Avoid df-clel 2804, ax-8 2111. (Revised by GG, 30-Aug-2024.) (Proof shortened by BJ, 30-Aug-2024.) |
| ⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑥𝜑) | ||
| Theorem | abvALT 3463 | Alternate proof of abv 3462, shorter but using more axioms. (Contributed by BJ, 19-Mar-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑥𝜑) | ||
| Theorem | isset 3464* |
Two ways to express that "𝐴 is a set": A class 𝐴 is a
member
of the universal class V (see df-v 3452)
if and only if the class
𝐴 exists (i.e., there exists some set
𝑥
equal to class 𝐴).
Theorem 6.9 of [Quine] p. 43.
A class 𝐴 which is not a set is called a proper class. Conventions: We will often use the expression "𝐴 ∈ V " to mean "𝐴 is a set", for example in uniex 7720. To make some theorems more readily applicable, we will also use the more general expression 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to mean "𝐴 is a set", typically in an antecedent, or in a hypothesis for theorems in deduction form (see for instance uniexg 7719 compared with uniex 7720). That this is more general is seen either by substitution (when the variable 𝑉 has no other occurrences), or by elex 3471. (Contributed by NM, 26-May-1993.) |
| ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | ||
| Theorem | cbvexeqsetf 3465* | The expression ∃𝑥𝑥 = 𝐴 means "𝐴 is a set" even if 𝐴 contains 𝑥 as a bound variable. This lemma helps minimizing axiom or df-clab 2709 usage in some cases. Extracted from the proof of issetft 3466. (Contributed by Wolf Lammen, 30-Jul-2025.) |
| ⊢ (Ⅎ𝑥𝐴 → (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴)) | ||
| Theorem | issetft 3466 | Closed theorem form of isset 3464 that does not require 𝑥 and 𝐴 to be distinct. Extracted from the proof of vtoclgft 3521. (Contributed by Wolf Lammen, 9-Apr-2025.) |
| ⊢ (Ⅎ𝑥𝐴 → (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)) | ||
| Theorem | issetf 3467 | A version of isset 3464 that does not require 𝑥 and 𝐴 to be distinct. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 10-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | ||
| Theorem | isseti 3468* | A way to say "𝐴 is a set" (inference form). (Contributed by NM, 24-Jun-1993.) Remove dependencies on axioms. (Revised by BJ, 13-Jul-2019.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ∃𝑥 𝑥 = 𝐴 | ||
| Theorem | issetri 3469* | A way to say "𝐴 is a set" (inference form). (Contributed by NM, 21-Jun-1993.) |
| ⊢ ∃𝑥 𝑥 = 𝐴 ⇒ ⊢ 𝐴 ∈ V | ||
| Theorem | eqvisset 3470 | A class equal to a variable is a set. Note the absence of disjoint variable condition, contrary to isset 3464 and issetri 3469. (Contributed by BJ, 27-Apr-2019.) |
| ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) | ||
| Theorem | elex 3471 | If a class is a member of another class, then it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 26-May-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Proof shortened by Wolf Lammen, 28-May-2025.) |
| ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | ||
| Theorem | elexOLD 3472 | Obsolete version of elex 3471 as of 28-May-2025. (Contributed by NM, 26-May-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | ||
| Theorem | elexi 3473 | If a class is a member of another class, then it is a set. Inference associated with elex 3471. (Contributed by NM, 11-Jun-1994.) |
| ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ 𝐴 ∈ V | ||
| Theorem | elexd 3474 | If a class is a member of another class, then it is a set. Deduction associated with elex 3471. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐴 ∈ V) | ||
| Theorem | elex22 3475* | If two classes each contain another class, then both contain some set. (Contributed by Alan Sare, 24-Oct-2011.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | ||
| Theorem | prcnel 3476 | A proper class doesn't belong to any class. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof shortened by AV, 14-Nov-2020.) |
| ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 ∈ 𝑉) | ||
| Theorem | ralv 3477 | A universal quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.) |
| ⊢ (∀𝑥 ∈ V 𝜑 ↔ ∀𝑥𝜑) | ||
| Theorem | rexv 3478 | An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.) |
| ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) | ||
| Theorem | reuv 3479 | A unique existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 1-Nov-2010.) |
| ⊢ (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥𝜑) | ||
| Theorem | rmov 3480 | An at-most-one quantifier restricted to the universe is unrestricted. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
| ⊢ (∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥𝜑) | ||
| Theorem | rabab 3481 | A class abstraction restricted to the universe is unrestricted. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| ⊢ {𝑥 ∈ V ∣ 𝜑} = {𝑥 ∣ 𝜑} | ||
| Theorem | rexcom4b 3482* | Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ↔ ∃𝑦 ∈ 𝐴 𝜑) | ||
| Theorem | ceqsal1t 3483 | One direction of ceqsalt 3484 is based on fewer assumptions and fewer axioms. It is at the same time the reverse direction of vtoclgft 3521. Extracted from a proof of ceqsalt 3484. (Contributed by Wolf Lammen, 25-Mar-2025.) |
| ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑))) | ||
| Theorem | ceqsalt 3484* | Closed theorem version of ceqsalg 3486. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.) |
| ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
| Theorem | ceqsralt 3485* | Restricted quantifier version of ceqsalt 3484. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.) |
| ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
| Theorem | ceqsalg 3486* | A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. For an alternate proof, see ceqsalgALT 3487. (Contributed by NM, 29-Oct-2003.) (Proof shortened by BJ, 29-Sep-2019.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
| Theorem | ceqsalgALT 3487* | Alternate proof of ceqsalg 3486, not using ceqsalt 3484. (Contributed by NM, 29-Oct-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Revised by BJ, 29-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
| Theorem | ceqsal 3488* | A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.) Avoid df-clab 2709. (Revised by Wolf Lammen, 23-Jan-2025.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) | ||
| Theorem | ceqsalALT 3489* | A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. Shorter proof uses df-clab 2709. (Contributed by NM, 18-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) | ||
| Theorem | ceqsalv 3490* | A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.) Avoid ax-12 2178. (Revised by SN, 8-Sep-2024.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) | ||
| Theorem | ceqsralv 3491* | Restricted quantifier version of ceqsalv 3490. (Contributed by NM, 21-Jun-2013.) Avoid ax-9 2119, ax-12 2178, ax-ext 2702. (Revised by SN, 8-Sep-2024.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
| Theorem | gencl 3492* | Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.) |
| ⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝐵)) & ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) & ⊢ (𝜒 → 𝜑) ⇒ ⊢ (𝜃 → 𝜓) | ||
| Theorem | 2gencl 3493* | Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.) |
| ⊢ (𝐶 ∈ 𝑆 ↔ ∃𝑥 ∈ 𝑅 𝐴 = 𝐶) & ⊢ (𝐷 ∈ 𝑆 ↔ ∃𝑦 ∈ 𝑅 𝐵 = 𝐷) & ⊢ (𝐴 = 𝐶 → (𝜑 ↔ 𝜓)) & ⊢ (𝐵 = 𝐷 → (𝜓 ↔ 𝜒)) & ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) → 𝜑) ⇒ ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆) → 𝜒) | ||
| Theorem | 3gencl 3494* | Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.) |
| ⊢ (𝐷 ∈ 𝑆 ↔ ∃𝑥 ∈ 𝑅 𝐴 = 𝐷) & ⊢ (𝐹 ∈ 𝑆 ↔ ∃𝑦 ∈ 𝑅 𝐵 = 𝐹) & ⊢ (𝐺 ∈ 𝑆 ↔ ∃𝑧 ∈ 𝑅 𝐶 = 𝐺) & ⊢ (𝐴 = 𝐷 → (𝜑 ↔ 𝜓)) & ⊢ (𝐵 = 𝐹 → (𝜓 ↔ 𝜒)) & ⊢ (𝐶 = 𝐺 → (𝜒 ↔ 𝜃)) & ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) → 𝜑) ⇒ ⊢ ((𝐷 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆) → 𝜃) | ||
| Theorem | cgsexg 3495* | Implicit substitution inference for general classes. (Contributed by NM, 26-Aug-2007.) |
| ⊢ (𝑥 = 𝐴 → 𝜒) & ⊢ (𝜒 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∃𝑥(𝜒 ∧ 𝜑) ↔ 𝜓)) | ||
| Theorem | cgsex2g 3496* | Implicit substitution inference for general classes. (Contributed by NM, 26-Jul-1995.) |
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜒) & ⊢ (𝜒 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥∃𝑦(𝜒 ∧ 𝜑) ↔ 𝜓)) | ||
| Theorem | cgsex4g 3497* | An implicit substitution inference for 4 general classes. (Contributed by NM, 5-Aug-1995.) Avoid ax-10 2142, ax-11 2158. (Revised by GG, 28-Jun-2024.) Avoid ax-9 2119, ax-ext 2702. (Revised by Wolf Lammen, 21-Mar-2025.) |
| ⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) → 𝜒) & ⊢ (𝜒 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆)) → (∃𝑥∃𝑦∃𝑧∃𝑤(𝜒 ∧ 𝜑) ↔ 𝜓)) | ||
| Theorem | cgsex4gOLD 3498* | Obsolete version of cgsex4g 3497 as of 21-Mar-2025. (Contributed by NM, 5-Aug-1995.) Avoid ax-10 2142, ax-11 2158. (Revised by GG, 28-Jun-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) → 𝜒) & ⊢ (𝜒 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆)) → (∃𝑥∃𝑦∃𝑧∃𝑤(𝜒 ∧ 𝜑) ↔ 𝜓)) | ||
| Theorem | ceqsex 3499* | Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) (Revised by Mario Carneiro, 10-Oct-2016.) (Proof shortened by Wolf Lammen, 22-Jan-2025.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) | ||
| Theorem | ceqsexOLD 3500* | Obsolete version of ceqsex 3499 as of 22-Jan-2025. (Contributed by NM, 2-Mar-1995.) (Revised by Mario Carneiro, 10-Oct-2016.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |