| Metamath
Proof Explorer Theorem List (p. 35 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | nfrmod 3401 | Deduction version of nfrmo 3403. Usage of this theorem is discouraged because it depends on ax-13 2370. (Contributed by NM, 17-Jun-2017.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∃*𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | nfreud 3402 | Deduction version of nfreu 3404. Usage of this theorem is discouraged because it depends on ax-13 2370. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 8-Oct-2016.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | nfrmo 3403 | Bound-variable hypothesis builder for restricted uniqueness. Usage of this theorem is discouraged because it depends on ax-13 2370. Use the weaker nfrmow 3385 when possible. (Contributed by NM, 16-Jun-2017.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∃*𝑦 ∈ 𝐴 𝜑 | ||
| Theorem | nfreu 3404 | Bound-variable hypothesis builder for restricted unique existence. Usage of this theorem is discouraged because it depends on ax-13 2370. Use the weaker nfreuw 3386 when possible. (Contributed by NM, 30-Oct-2010.) (Revised by Mario Carneiro, 8-Oct-2016.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜑 | ||
| Syntax | crab 3405 | Extend class notation to include the restricted class abstraction (class builder). |
| class {𝑥 ∈ 𝐴 ∣ 𝜑} | ||
| Definition | df-rab 3406 |
Define a restricted class abstraction (class builder): {𝑥 ∈ 𝐴 ∣ 𝜑}
is the class of all sets 𝑥 in 𝐴 such that 𝜑(𝑥) is true.
Definition of [TakeutiZaring] p.
20.
For the interpretation given in the previous paragraph to be correct, we need to assume Ⅎ𝑥𝐴, which is the case as soon as 𝑥 and 𝐴 are disjoint, which is generally the case. If 𝐴 were to depend on 𝑥, then the interpretation would be less obvious (think of the two extreme cases 𝐴 = {𝑥} and 𝐴 = 𝑥, for instance). See also df-ral 3045. (Contributed by NM, 22-Nov-1994.) |
| ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | ||
| Theorem | rabbidva2 3407* | Equivalent wff's yield equal restricted class abstractions. (Contributed by Thierry Arnoux, 4-Feb-2017.) |
| ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) | ||
| Theorem | rabbia2 3408 | Equivalent wff's yield equal restricted class abstractions. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒} | ||
| Theorem | rabbiia 3409 | Equivalent formulas yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.) (Proof shortened by Wolf Lammen, 12-Jan-2025.) |
| ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} | ||
| Theorem | rabbiiaOLD 3410 | Obsolete version of rabbiia 3409 as of 12-Jan-2025. (Contributed by NM, 22-May-1999.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} | ||
| Theorem | rabbii 3411 | Equivalent wff's correspond to equal restricted class abstractions. Inference form of rabbidv 3413. (Contributed by Peter Mazsa, 1-Nov-2019.) |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} | ||
| Theorem | rabbidva 3412* | Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 28-Nov-2003.) (Proof shortened by SN, 3-Dec-2023.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
| Theorem | rabbidv 3413* | Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 10-Feb-1995.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
| Theorem | rabbieq 3414 | Equivalent wff's correspond to restricted class abstractions which are equal with the same class. (Contributed by Peter Mazsa, 8-Jul-2019.) |
| ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} & ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} | ||
| Theorem | rabswap 3415 | Swap with a membership relation in a restricted class abstraction. (Contributed by NM, 4-Jul-2005.) |
| ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐴} | ||
| Theorem | cbvrabv 3416* | Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999.) Require 𝑥, 𝑦 be disjoint to avoid ax-11 2158 and ax-13 2370. (Revised by Steven Nguyen, 4-Dec-2022.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} | ||
| Theorem | rabeqcda 3417* | When 𝜓 is always true in a context, a restricted class abstraction is equal to the restricting class. Deduction form of rabeqc 3418. (Contributed by Steven Nguyen, 7-Jun-2023.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = 𝐴) | ||
| Theorem | rabeqc 3418* | A restricted class abstraction equals the restricting class if its condition follows from the membership of the free setvar variable in the restricting class. (Contributed by AV, 20-Apr-2022.) (Proof shortened by SN, 15-Jan-2025.) |
| ⊢ (𝑥 ∈ 𝐴 → 𝜑) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = 𝐴 | ||
| Theorem | rabeqi 3419 | Equality theorem for restricted class abstractions. Inference form of rabeqf 3440. (Contributed by Glauco Siliprandi, 26-Jun-2021.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by GG, 3-Jun-2024.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} | ||
| Theorem | rabeq 3420* | Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by GG, 20-Aug-2023.) |
| ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) | ||
| Theorem | rabeqdv 3421* | Equality of restricted class abstractions. Deduction form of rabeq 3420. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) | ||
| Theorem | rabeqbidva 3422* | Equality of restricted class abstractions. (Contributed by Mario Carneiro, 26-Jan-2017.) Remove DV conditions. (Revised by GG, 1-Sep-2025.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) | ||
| Theorem | rabeqbidvaOLD 3423* | Obsolete version of rabeqbidva 3422 as of 1-Sep-2025. (Contributed by Mario Carneiro, 26-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) | ||
| Theorem | rabeqbidv 3424* | Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) | ||
| Theorem | rabrabi 3425* | Abstract builder restricted to another restricted abstract builder with implicit substitution. (Contributed by AV, 2-Aug-2022.) Avoid ax-10 2142, ax-11 2158 and ax-12 2178. (Revised by GG, 12-Oct-2024.) |
| ⊢ (𝑥 = 𝑦 → (𝜒 ↔ 𝜑)) ⇒ ⊢ {𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ (𝜒 ∧ 𝜓)} | ||
| Theorem | nfrab1 3426 | The abstraction variable in a restricted class abstraction isn't free. (Contributed by NM, 19-Mar-1997.) |
| ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝜑} | ||
| Theorem | rabid 3427 | An "identity" law of concretion for restricted abstraction. Special case of Definition 2.1 of [Quine] p. 16. (Contributed by NM, 9-Oct-2003.) |
| ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | ||
| Theorem | rabidim1 3428 | Membership in a restricted abstraction, implication. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝑥 ∈ 𝐴) | ||
| Theorem | reqabi 3429 | Inference from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.) |
| ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} ⇒ ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) | ||
| Theorem | rabrab 3430 | Abstract builder restricted to another restricted abstract builder. (Contributed by Thierry Arnoux, 30-Aug-2017.) |
| ⊢ {𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} | ||
| Theorem | rabbida4 3431 | Version of rabbidva2 3407 with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) | ||
| Theorem | rabbida 3432 | Equivalent wff's yield equal restricted class abstractions (deduction form). Version of rabbidva 3412 with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.) Avoid ax-10 2142, ax-11 2158. (Revised by Wolf Lammen, 14-Mar-2025.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
| Theorem | rabbid 3433 | Version of rabbidv 3413 with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
| Theorem | rabeqd 3434 | Deduction form of rabeq 3420. Note that contrary to rabeq 3420 it has no disjoint variable condition. (Contributed by BJ, 27-Apr-2019.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) | ||
| Theorem | rabeqbida 3435 | Version of rabeqbidva 3422 with two disjoint variable conditions removed and the third replaced by a nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) | ||
| Theorem | rabbi 3436 | Equivalent wff's correspond to equal restricted class abstractions. Closed theorem form of rabbii 3411. (Contributed by NM, 25-Nov-2013.) |
| ⊢ (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜒) ↔ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
| Theorem | rabid2f 3437 | An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Revised by Thierry Arnoux, 13-Mar-2017.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | rabid2im 3438* | One direction of rabid2 3439 is based on fewer axioms. (Contributed by Wolf Lammen, 26-May-2025.) |
| ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑}) | ||
| Theorem | rabid2 3439* | An "identity" law for restricted class abstraction. Prefer rabid2im 3438 if one direction is sufficient. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2024.) |
| ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | rabeqf 3440 | Equality theorem for restricted class abstractions, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) | ||
| Theorem | cbvrabw 3441* | Rule to change the bound variable in a restricted class abstraction, using implicit substitution. Version of cbvrab 3446 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by Andrew Salmon, 11-Jul-2011.) Avoid ax-13 2370. (Revised by GG, 10-Jan-2024.) Avoid ax-10 2142. (Revised by Wolf Lammen, 19-Jul-2025.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} | ||
| Theorem | cbvrabwOLD 3442* | Obsolete version of cbvrabw 3441 as of 19-Jul-2025. (Contributed by Andrew Salmon, 11-Jul-2011.) Avoid ax-13 2370. (Revised by GG, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} | ||
| Theorem | nfrabw 3443* | A variable not free in a wff remains so in a restricted class abstraction. Version of nfrab 3445 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by NM, 13-Oct-2003.) Avoid ax-13 2370. (Revised by GG, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 23-Nov-2024.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} | ||
| Theorem | rabbidaOLD 3444 | Obsolete version of rabbida 3432 as of 14-Mar-2025. (Contributed by BJ, 27-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
| Theorem | nfrab 3445 | A variable not free in a wff remains so in a restricted class abstraction. Usage of this theorem is discouraged because it depends on ax-13 2370. Use the weaker nfrabw 3443 when possible. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 9-Oct-2016.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} | ||
| Theorem | cbvrab 3446 | Rule to change the bound variable in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2370. Use the weaker cbvrabw 3441 when possible. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 9-Oct-2016.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} | ||
| Syntax | cvv 3447 | Extend class notation to include the universal class symbol. |
| class V | ||
| Theorem | vjust 3448 | Justification theorem for df-v 3449. (Contributed by Rodolfo Medina, 27-Apr-2010.) |
| ⊢ {𝑥 ∣ 𝑥 = 𝑥} = {𝑦 ∣ 𝑦 = 𝑦} | ||
| Definition | df-v 3449 |
Define the universal class. Definition 5.20 of [TakeutiZaring] p. 21.
Also Definition 2.9 of [Quine] p. 19. The
class V can be described
as the "class of all sets"; vprc 5270
proves that V is not itself a set
in ZF. We will frequently use the expression 𝐴 ∈ V as a short way
to
say "𝐴 is a set", and isset 3461 proves that this expression has the
same meaning as ∃𝑥𝑥 = 𝐴.
In well-founded set theories without urelements, like ZF, the class V is equal to the von Neumann universe. However, the letter "V" does not stand for "von Neumann". The letter "V" was used earlier by Peano in 1889 for the universe of sets, where the letter V is derived from the Latin word "Verum", referring to the true truth constant 𝑇. Peano's notation V was adopted by Whitehead and Russell in Principia Mathematica for the class of all sets in 1910. The class constant V is the first class constant introduced in this database. As a constant, as opposed to a variable, it cannot be substituted with anything, and in particular it is not part of any disjoint variable condition. For a general discussion of the theory of classes, see mmset.html#class 3461. See dfv2 3450 for an alternate definition. (Contributed by NM, 26-May-1993.) |
| ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} | ||
| Theorem | dfv2 3450 | Alternate definition of the universal class (see df-v 3449). (Contributed by BJ, 30-Nov-2019.) |
| ⊢ V = {𝑥 ∣ ⊤} | ||
| Theorem | vex 3451 | All setvar variables are sets (see isset 3461). Theorem 6.8 of [Quine] p. 43. A shorter proof is possible from eleq2i 2820 but it uses more axioms. (Contributed by NM, 26-May-1993.) Remove use of ax-12 2178. (Revised by SN, 28-Aug-2023.) (Proof shortened by BJ, 4-Sep-2024.) |
| ⊢ 𝑥 ∈ V | ||
| Theorem | elv 3452 | If a proposition is implied by 𝑥 ∈ V (which is true, see vex 3451), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.) |
| ⊢ (𝑥 ∈ V → 𝜑) ⇒ ⊢ 𝜑 | ||
| Theorem | elvd 3453 | If a proposition is implied by 𝑥 ∈ V (which is true, see vex 3451) and another antecedent, then it is implied by that other antecedent. Deduction associated with elv 3452. (Contributed by Peter Mazsa, 23-Oct-2018.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ V) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | el2v 3454 | If a proposition is implied by 𝑥 ∈ V and 𝑦 ∈ V (which is true, see vex 3451), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.) |
| ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝜑) ⇒ ⊢ 𝜑 | ||
| Theorem | el3v 3455 | If a proposition is implied by 𝑥 ∈ V, 𝑦 ∈ V and 𝑧 ∈ V (which is true, see vex 3451), then it is true. Inference forms (with ⊢ 𝐴 ∈ V, ⊢ 𝐵 ∈ V and ⊢ 𝐶 ∈ V hypotheses) of the general theorems (proving ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → assertions) may be superfluous. (Contributed by Peter Mazsa, 13-Oct-2018.) |
| ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → 𝜑) ⇒ ⊢ 𝜑 | ||
| Theorem | el3v3 3456 | If a proposition is implied by 𝑧 ∈ V (which is true, see vex 3451) and two other antecedents, then it is implied by these other antecedents. (Contributed by Peter Mazsa, 16-Oct-2020.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ V) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | ||
| Theorem | eqv 3457* | The universe contains every set. (Contributed by NM, 11-Sep-2006.) Remove dependency on ax-10 2142, ax-11 2158, ax-13 2370. (Revised by BJ, 10-Aug-2022.) |
| ⊢ (𝐴 = V ↔ ∀𝑥 𝑥 ∈ 𝐴) | ||
| Theorem | eqvf 3458 | The universe contains every set. (Contributed by BJ, 15-Jul-2021.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 = V ↔ ∀𝑥 𝑥 ∈ 𝐴) | ||
| Theorem | abv 3459 | The class of sets verifying a property is the universal class if and only if that property is a tautology. The reverse implication (bj-abv 36894) requires fewer axioms. (Contributed by BJ, 19-Mar-2021.) Avoid df-clel 2803, ax-8 2111. (Revised by GG, 30-Aug-2024.) (Proof shortened by BJ, 30-Aug-2024.) |
| ⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑥𝜑) | ||
| Theorem | abvALT 3460 | Alternate proof of abv 3459, shorter but using more axioms. (Contributed by BJ, 19-Mar-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑥𝜑) | ||
| Theorem | isset 3461* |
Two ways to express that "𝐴 is a set": A class 𝐴 is a
member
of the universal class V (see df-v 3449)
if and only if the class
𝐴 exists (i.e., there exists some set
𝑥
equal to class 𝐴).
Theorem 6.9 of [Quine] p. 43.
A class 𝐴 which is not a set is called a proper class. Conventions: We will often use the expression "𝐴 ∈ V " to mean "𝐴 is a set", for example in uniex 7717. To make some theorems more readily applicable, we will also use the more general expression 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to mean "𝐴 is a set", typically in an antecedent, or in a hypothesis for theorems in deduction form (see for instance uniexg 7716 compared with uniex 7717). That this is more general is seen either by substitution (when the variable 𝑉 has no other occurrences), or by elex 3468. (Contributed by NM, 26-May-1993.) |
| ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | ||
| Theorem | cbvexeqsetf 3462* | The expression ∃𝑥𝑥 = 𝐴 means "𝐴 is a set" even if 𝐴 contains 𝑥 as a bound variable. This lemma helps minimizing axiom or df-clab 2708 usage in some cases. Extracted from the proof of issetft 3463. (Contributed by Wolf Lammen, 30-Jul-2025.) |
| ⊢ (Ⅎ𝑥𝐴 → (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴)) | ||
| Theorem | issetft 3463 | Closed theorem form of isset 3461 that does not require 𝑥 and 𝐴 to be distinct. Extracted from the proof of vtoclgft 3518. (Contributed by Wolf Lammen, 9-Apr-2025.) |
| ⊢ (Ⅎ𝑥𝐴 → (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)) | ||
| Theorem | issetf 3464 | A version of isset 3461 that does not require 𝑥 and 𝐴 to be distinct. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 10-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | ||
| Theorem | isseti 3465* | A way to say "𝐴 is a set" (inference form). (Contributed by NM, 24-Jun-1993.) Remove dependencies on axioms. (Revised by BJ, 13-Jul-2019.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ∃𝑥 𝑥 = 𝐴 | ||
| Theorem | issetri 3466* | A way to say "𝐴 is a set" (inference form). (Contributed by NM, 21-Jun-1993.) |
| ⊢ ∃𝑥 𝑥 = 𝐴 ⇒ ⊢ 𝐴 ∈ V | ||
| Theorem | eqvisset 3467 | A class equal to a variable is a set. Note the absence of disjoint variable condition, contrary to isset 3461 and issetri 3466. (Contributed by BJ, 27-Apr-2019.) |
| ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) | ||
| Theorem | elex 3468 | If a class is a member of another class, then it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 26-May-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Proof shortened by Wolf Lammen, 28-May-2025.) |
| ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | ||
| Theorem | elexOLD 3469 | Obsolete version of elex 3468 as of 28-May-2025. (Contributed by NM, 26-May-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | ||
| Theorem | elexi 3470 | If a class is a member of another class, then it is a set. Inference associated with elex 3468. (Contributed by NM, 11-Jun-1994.) |
| ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ 𝐴 ∈ V | ||
| Theorem | elexd 3471 | If a class is a member of another class, then it is a set. Deduction associated with elex 3468. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐴 ∈ V) | ||
| Theorem | elex22 3472* | If two classes each contain another class, then both contain some set. (Contributed by Alan Sare, 24-Oct-2011.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | ||
| Theorem | prcnel 3473 | A proper class doesn't belong to any class. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof shortened by AV, 14-Nov-2020.) |
| ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 ∈ 𝑉) | ||
| Theorem | ralv 3474 | A universal quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.) |
| ⊢ (∀𝑥 ∈ V 𝜑 ↔ ∀𝑥𝜑) | ||
| Theorem | rexv 3475 | An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.) |
| ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) | ||
| Theorem | reuv 3476 | A unique existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 1-Nov-2010.) |
| ⊢ (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥𝜑) | ||
| Theorem | rmov 3477 | An at-most-one quantifier restricted to the universe is unrestricted. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
| ⊢ (∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥𝜑) | ||
| Theorem | rabab 3478 | A class abstraction restricted to the universe is unrestricted. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| ⊢ {𝑥 ∈ V ∣ 𝜑} = {𝑥 ∣ 𝜑} | ||
| Theorem | rexcom4b 3479* | Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ↔ ∃𝑦 ∈ 𝐴 𝜑) | ||
| Theorem | ceqsal1t 3480 | One direction of ceqsalt 3481 is based on fewer assumptions and fewer axioms. It is at the same time the reverse direction of vtoclgft 3518. Extracted from a proof of ceqsalt 3481. (Contributed by Wolf Lammen, 25-Mar-2025.) |
| ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑))) | ||
| Theorem | ceqsalt 3481* | Closed theorem version of ceqsalg 3483. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.) |
| ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
| Theorem | ceqsralt 3482* | Restricted quantifier version of ceqsalt 3481. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.) |
| ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
| Theorem | ceqsalg 3483* | A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. For an alternate proof, see ceqsalgALT 3484. (Contributed by NM, 29-Oct-2003.) (Proof shortened by BJ, 29-Sep-2019.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
| Theorem | ceqsalgALT 3484* | Alternate proof of ceqsalg 3483, not using ceqsalt 3481. (Contributed by NM, 29-Oct-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Revised by BJ, 29-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
| Theorem | ceqsal 3485* | A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.) Avoid df-clab 2708. (Revised by Wolf Lammen, 23-Jan-2025.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) | ||
| Theorem | ceqsalALT 3486* | A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. Shorter proof uses df-clab 2708. (Contributed by NM, 18-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) | ||
| Theorem | ceqsalv 3487* | A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.) Avoid ax-12 2178. (Revised by SN, 8-Sep-2024.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) | ||
| Theorem | ceqsralv 3488* | Restricted quantifier version of ceqsalv 3487. (Contributed by NM, 21-Jun-2013.) Avoid ax-9 2119, ax-12 2178, ax-ext 2701. (Revised by SN, 8-Sep-2024.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
| Theorem | gencl 3489* | Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.) |
| ⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝐵)) & ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) & ⊢ (𝜒 → 𝜑) ⇒ ⊢ (𝜃 → 𝜓) | ||
| Theorem | 2gencl 3490* | Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.) |
| ⊢ (𝐶 ∈ 𝑆 ↔ ∃𝑥 ∈ 𝑅 𝐴 = 𝐶) & ⊢ (𝐷 ∈ 𝑆 ↔ ∃𝑦 ∈ 𝑅 𝐵 = 𝐷) & ⊢ (𝐴 = 𝐶 → (𝜑 ↔ 𝜓)) & ⊢ (𝐵 = 𝐷 → (𝜓 ↔ 𝜒)) & ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) → 𝜑) ⇒ ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆) → 𝜒) | ||
| Theorem | 3gencl 3491* | Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.) |
| ⊢ (𝐷 ∈ 𝑆 ↔ ∃𝑥 ∈ 𝑅 𝐴 = 𝐷) & ⊢ (𝐹 ∈ 𝑆 ↔ ∃𝑦 ∈ 𝑅 𝐵 = 𝐹) & ⊢ (𝐺 ∈ 𝑆 ↔ ∃𝑧 ∈ 𝑅 𝐶 = 𝐺) & ⊢ (𝐴 = 𝐷 → (𝜑 ↔ 𝜓)) & ⊢ (𝐵 = 𝐹 → (𝜓 ↔ 𝜒)) & ⊢ (𝐶 = 𝐺 → (𝜒 ↔ 𝜃)) & ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) → 𝜑) ⇒ ⊢ ((𝐷 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆) → 𝜃) | ||
| Theorem | cgsexg 3492* | Implicit substitution inference for general classes. (Contributed by NM, 26-Aug-2007.) |
| ⊢ (𝑥 = 𝐴 → 𝜒) & ⊢ (𝜒 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∃𝑥(𝜒 ∧ 𝜑) ↔ 𝜓)) | ||
| Theorem | cgsex2g 3493* | Implicit substitution inference for general classes. (Contributed by NM, 26-Jul-1995.) |
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜒) & ⊢ (𝜒 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥∃𝑦(𝜒 ∧ 𝜑) ↔ 𝜓)) | ||
| Theorem | cgsex4g 3494* | An implicit substitution inference for 4 general classes. (Contributed by NM, 5-Aug-1995.) Avoid ax-10 2142, ax-11 2158. (Revised by GG, 28-Jun-2024.) Avoid ax-9 2119, ax-ext 2701. (Revised by Wolf Lammen, 21-Mar-2025.) |
| ⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) → 𝜒) & ⊢ (𝜒 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆)) → (∃𝑥∃𝑦∃𝑧∃𝑤(𝜒 ∧ 𝜑) ↔ 𝜓)) | ||
| Theorem | cgsex4gOLD 3495* | Obsolete version of cgsex4g 3494 as of 21-Mar-2025. (Contributed by NM, 5-Aug-1995.) Avoid ax-10 2142, ax-11 2158. (Revised by GG, 28-Jun-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) → 𝜒) & ⊢ (𝜒 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆)) → (∃𝑥∃𝑦∃𝑧∃𝑤(𝜒 ∧ 𝜑) ↔ 𝜓)) | ||
| Theorem | ceqsex 3496* | Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) (Revised by Mario Carneiro, 10-Oct-2016.) (Proof shortened by Wolf Lammen, 22-Jan-2025.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) | ||
| Theorem | ceqsexOLD 3497* | Obsolete version of ceqsex 3496 as of 22-Jan-2025. (Contributed by NM, 2-Mar-1995.) (Revised by Mario Carneiro, 10-Oct-2016.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) | ||
| Theorem | ceqsexv 3498* | Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) Avoid ax-12 2178. (Revised by GG, 12-Oct-2024.) (Proof shortened by Wolf Lammen, 22-Jan-2025.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) | ||
| Theorem | ceqsexv2d 3499* | Elimination of an existential quantifier, using implicit substitution. (Contributed by Thierry Arnoux, 10-Sep-2016.) Shorten, reduce dv conditions. (Revised by Wolf Lammen, 5-Jun-2025.) (Proof shortened by SN, 5-Jun-2025.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜓 ⇒ ⊢ ∃𝑥𝜑 | ||
| Theorem | ceqsexv2dOLD 3500* | Obsolete version of ceqsexv2d 3499 as of 5-Jun-2025. (Contributed by Thierry Arnoux, 10-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜓 ⇒ ⊢ ∃𝑥𝜑 | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |