Home | Metamath
Proof Explorer Theorem List (p. 35 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29280) |
Hilbert Space Explorer
(29281-30803) |
Users' Mathboxes
(30804-46521) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cbvral3v 3401* | Change bound variables of triple restricted universal quantification, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvral3vw 3398 when possible. (Contributed by NM, 10-May-2005.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑣 → (𝜒 ↔ 𝜃)) & ⊢ (𝑧 = 𝑢 → (𝜃 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐶 𝜓) | ||
Theorem | cbvralsvw 3402* | Change bound variable by using a substitution. Version of cbvralsv 3404 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 20-Nov-2005.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) | ||
Theorem | cbvrexsvw 3403* | Change bound variable by using a substitution. Version of cbvrexsv 3405 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 2-Mar-2008.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) | ||
Theorem | cbvralsv 3404* | Change bound variable by using a substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvralsvw 3402 when possible. (Contributed by NM, 20-Nov-2005.) (Revised by Andrew Salmon, 11-Jul-2011.) (New usage is discouraged.) |
⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) | ||
Theorem | cbvrexsv 3405* | Change bound variable by using a substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvrexsvw 3403 when possible. (Contributed by NM, 2-Mar-2008.) (Revised by Andrew Salmon, 11-Jul-2011.) (New usage is discouraged.) |
⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) | ||
Theorem | sbralie 3406* | Implicit to explicit substitution that swaps variables in a rectrictedly universally quantified expression. (Contributed by NM, 5-Sep-2004.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝑦 𝜑 ↔ [𝑦 / 𝑥]∀𝑦 ∈ 𝑥 𝜓) | ||
Theorem | rabbiia 3407 | Equivalent formulas yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.) |
⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} | ||
Theorem | rabbii 3408 | Equivalent wff's correspond to equal restricted class abstractions. Inference form of rabbidv 3414. (Contributed by Peter Mazsa, 1-Nov-2019.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} | ||
Theorem | rabbida 3409 | Equivalent wff's yield equal restricted class abstractions (deduction form). Version of rabbidva 3413 with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
Theorem | rabbid 3410 | Version of rabbidv 3414 with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
Theorem | rabbidva2 3411* | Equivalent wff's yield equal restricted class abstractions. (Contributed by Thierry Arnoux, 4-Feb-2017.) |
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) | ||
Theorem | rabbia2 3412 | Equivalent wff's yield equal restricted class abstractions. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒} | ||
Theorem | rabbidva 3413* | Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 28-Nov-2003.) (Proof shortened by SN, 3-Dec-2023.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
Theorem | rabbidv 3414* | Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 10-Feb-1995.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
Theorem | rabeqf 3415 | Equality theorem for restricted class abstractions, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) | ||
Theorem | rabeqi 3416 | Equality theorem for restricted class abstractions. Inference form of rabeqf 3415. (Contributed by Glauco Siliprandi, 26-Jun-2021.) Avoid ax-10 2137, ax-11 2154, ax-12 2171. (Revised by Gino Giotto, 3-Jun-2024.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} | ||
Theorem | rabeqiOLD 3417 | Obsolete version of rabeqi 3416 as of 3-Jun-2024. (Contributed by Glauco Siliprandi, 26-Jun-2021.) Avoid ax-10 2137 and ax-11 2154. (Revised by Gino Giotto, 20-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} | ||
Theorem | rabeq 3418* | Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) Avoid ax-10 2137, ax-11 2154, ax-12 2171. (Revised by Gino Giotto, 20-Aug-2023.) |
⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) | ||
Theorem | rabeqdv 3419* | Equality of restricted class abstractions. Deduction form of rabeq 3418. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) | ||
Theorem | rabeqbidv 3420* | Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) | ||
Theorem | rabeqbidva 3421* | Equality of restricted class abstractions. (Contributed by Mario Carneiro, 26-Jan-2017.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) | ||
Theorem | rabeq2i 3422 | Inference from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.) |
⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} ⇒ ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) | ||
Theorem | rabswap 3423 | Swap with a membership relation in a restricted class abstraction. (Contributed by NM, 4-Jul-2005.) |
⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐴} | ||
Theorem | cbvrabw 3424* | Rule to change the bound variable in a restricted class abstraction, using implicit substitution. Version of cbvrab 3425 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} | ||
Theorem | cbvrab 3425 | Rule to change the bound variable in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvrabw 3424 when possible. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 9-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} | ||
Theorem | cbvrabv 3426* | Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999.) Require 𝑥, 𝑦 be disjoint to avoid ax-11 2154 and ax-13 2372. (Revised by Steven Nguyen, 4-Dec-2022.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} | ||
Theorem | rabrabi 3427* | Abstract builder restricted to another restricted abstract builder with implicit substitution. (Contributed by AV, 2-Aug-2022.) Avoid ax-10 2137, ax-11 2154 and ax-12 2171. (Revised by Gino Giotto, 12-Oct-2024.) |
⊢ (𝑥 = 𝑦 → (𝜒 ↔ 𝜑)) ⇒ ⊢ {𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ (𝜒 ∧ 𝜓)} | ||
Theorem | rabrabiOLD 3428* | Obsolete version of rabrabi 3427 as of 12-Oct-2024. (Contributed by AV, 2-Aug-2022.) Avoid ax-10 2137 and ax-11 2154. (Revised by Gino Giotto, 20-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜒 ↔ 𝜑)) ⇒ ⊢ {𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ (𝜒 ∧ 𝜓)} | ||
Theorem | rabeqcda 3429* | When 𝜓 is always true in a context, a restricted class abstraction is equal to the restricting class. Deduction form of rabeqc 3622. (Contributed by Steven Nguyen, 7-Jun-2023.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = 𝐴) | ||
Theorem | ralrimia 3430 | Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | ||
Theorem | ralimda 3431 | Deduction quantifying both antecedent and consequent. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) | ||
Syntax | cvv 3432 | Extend class notation to include the universal class symbol. |
class V | ||
Theorem | vjust 3433 | Justification theorem for df-v 3434. (Contributed by Rodolfo Medina, 27-Apr-2010.) |
⊢ {𝑥 ∣ 𝑥 = 𝑥} = {𝑦 ∣ 𝑦 = 𝑦} | ||
Definition | df-v 3434 |
Define the universal class. Definition 5.20 of [TakeutiZaring] p. 21.
Also Definition 2.9 of [Quine] p. 19. The
class V can be described
as the "class of all sets"; vprc 5239
proves that V is not itself a set
in ZF. We will frequently use the expression 𝐴 ∈ V as a short way
to
say "𝐴 is a set", and isset 3445 proves that this expression has the
same meaning as ∃𝑥𝑥 = 𝐴.
In well-founded set theories without urelements, like ZF, the class V is equal to the von Neumann universe. However, the letter "V" does not stand for "von Neumann". The letter "V" was used earlier by Peano in 1889 for the universe of sets, where the letter V is derived from the Latin word "Verum", referring to the true truth constant 𝑇. Peano's notation V was adopted by Whitehead and Russell in Principia Mathematica for the class of all sets in 1910. The class constant V is the first class constant introduced in this database. As a constant, as opposed to a variable, it cannot be substituted with anything, and in particular it is not part of any disjoint variable condition. For a general discussion of the theory of classes, see mmset.html#class 3445. See dfv2 3435 for an alternate definition. (Contributed by NM, 26-May-1993.) |
⊢ V = {𝑥 ∣ 𝑥 = 𝑥} | ||
Theorem | dfv2 3435 | Alternate definition of the universal class (see df-v 3434). (Contributed by BJ, 30-Nov-2019.) |
⊢ V = {𝑥 ∣ ⊤} | ||
Theorem | vex 3436 | All setvar variables are sets (see isset 3445). Theorem 6.8 of [Quine] p. 43. A shorter proof is possible from eleq2i 2830 but it uses more axioms. (Contributed by NM, 26-May-1993.) Remove use of ax-12 2171. (Revised by SN, 28-Aug-2023.) (Proof shortened by BJ, 4-Sep-2024.) |
⊢ 𝑥 ∈ V | ||
Theorem | vexOLD 3437 | Obsolete version of vex 3436 as of 4-Sep-2024. (Contributed by NM, 26-May-1993.) Remove use of ax-12 2171. (Revised by SN, 28-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑥 ∈ V | ||
Theorem | elv 3438 | If a proposition is implied by 𝑥 ∈ V (which is true, see vex 3436), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.) |
⊢ (𝑥 ∈ V → 𝜑) ⇒ ⊢ 𝜑 | ||
Theorem | elvd 3439 | If a proposition is implied by 𝑥 ∈ V (which is true, see vex 3436) and another antecedent, then it is implied by that other antecedent. Deduction associated with elv 3438. (Contributed by Peter Mazsa, 23-Oct-2018.) |
⊢ ((𝜑 ∧ 𝑥 ∈ V) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | el2v 3440 | If a proposition is implied by 𝑥 ∈ V and 𝑦 ∈ V (which is true, see vex 3436), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.) |
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝜑) ⇒ ⊢ 𝜑 | ||
Theorem | eqv 3441* | The universe contains every set. (Contributed by NM, 11-Sep-2006.) Remove dependency on ax-10 2137, ax-11 2154, ax-13 2372. (Revised by BJ, 10-Aug-2022.) |
⊢ (𝐴 = V ↔ ∀𝑥 𝑥 ∈ 𝐴) | ||
Theorem | eqvf 3442 | The universe contains every set. (Contributed by BJ, 15-Jul-2021.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 = V ↔ ∀𝑥 𝑥 ∈ 𝐴) | ||
Theorem | abv 3443 | The class of sets verifying a property is the universal class if and only if that property is a tautology. The reverse implication (bj-abv 35091) requires fewer axioms. (Contributed by BJ, 19-Mar-2021.) Avoid df-clel 2816, ax-8 2108. (Revised by Gino Giotto, 30-Aug-2024.) (Proof shortened by BJ, 30-Aug-2024.) |
⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑥𝜑) | ||
Theorem | abvALT 3444 | Alternate proof of abv 3443, shorter but using more axioms. (Contributed by BJ, 19-Mar-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑥𝜑) | ||
Theorem | isset 3445* |
Two ways to express that "𝐴 is a set": A class 𝐴 is a
member
of the universal class V (see df-v 3434)
if and only if the class
𝐴 exists (i.e., there exists some set
𝑥
equal to class 𝐴).
Theorem 6.9 of [Quine] p. 43.
A class 𝐴 which is not a set is called a proper class. Conventions: We will often use the expression "𝐴 ∈ V " to mean "𝐴 is a set", for example in uniex 7594. To make some theorems more readily applicable, we will also use the more general expression 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to mean "𝐴 is a set", typically in an antecedent, or in a hypothesis for theorems in deduction form (see for instance uniexg 7593 compared with uniex 7594). That this is more general is seen either by substitution (when the variable 𝑉 has no other occurrences), or by elex 3450. (Contributed by NM, 26-May-1993.) |
⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | ||
Theorem | issetf 3446 | A version of isset 3445 that does not require 𝑥 and 𝐴 to be distinct. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 10-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | ||
Theorem | isseti 3447* | A way to say "𝐴 is a set" (inference form). (Contributed by NM, 24-Jun-1993.) Remove dependencies on axioms. (Revised by BJ, 13-Jul-2019.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ∃𝑥 𝑥 = 𝐴 | ||
Theorem | issetri 3448* | A way to say "𝐴 is a set" (inference form). (Contributed by NM, 21-Jun-1993.) |
⊢ ∃𝑥 𝑥 = 𝐴 ⇒ ⊢ 𝐴 ∈ V | ||
Theorem | eqvisset 3449 | A class equal to a variable is a set. Note the absence of disjoint variable condition, contrary to isset 3445 and issetri 3448. (Contributed by BJ, 27-Apr-2019.) |
⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) | ||
Theorem | elex 3450 | If a class is a member of another class, then it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 26-May-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | ||
Theorem | elexi 3451 | If a class is a member of another class, then it is a set. Inference associated with elex 3450. (Contributed by NM, 11-Jun-1994.) |
⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ 𝐴 ∈ V | ||
Theorem | elexd 3452 | If a class is a member of another class, then it is a set. Deduction associated with elex 3450. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐴 ∈ V) | ||
Theorem | elex2OLD 3453* | Obsolete version of elex2 2818 as of 30-Nov-2024. (Contributed by Alan Sare, 25-Sep-2011.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) | ||
Theorem | elex22 3454* | If two classes each contain another class, then both contain some set. (Contributed by Alan Sare, 24-Oct-2011.) |
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | ||
Theorem | prcnel 3455 | A proper class doesn't belong to any class. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof shortened by AV, 14-Nov-2020.) |
⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 ∈ 𝑉) | ||
Theorem | ralv 3456 | A universal quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.) |
⊢ (∀𝑥 ∈ V 𝜑 ↔ ∀𝑥𝜑) | ||
Theorem | rexv 3457 | An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.) |
⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) | ||
Theorem | reuv 3458 | A unique existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 1-Nov-2010.) |
⊢ (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥𝜑) | ||
Theorem | rmov 3459 | An at-most-one quantifier restricted to the universe is unrestricted. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
⊢ (∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥𝜑) | ||
Theorem | rabab 3460 | A class abstraction restricted to the universe is unrestricted. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
⊢ {𝑥 ∈ V ∣ 𝜑} = {𝑥 ∣ 𝜑} | ||
Theorem | rexcom4b 3461* | Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ↔ ∃𝑦 ∈ 𝐴 𝜑) | ||
Theorem | ceqsalt 3462* | Closed theorem version of ceqsalg 3464. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.) |
⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
Theorem | ceqsralt 3463* | Restricted quantifier version of ceqsalt 3462. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.) |
⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
Theorem | ceqsalg 3464* | A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. For an alternate proof, see ceqsalgALT 3465. (Contributed by NM, 29-Oct-2003.) (Proof shortened by BJ, 29-Sep-2019.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
Theorem | ceqsalgALT 3465* | Alternate proof of ceqsalg 3464, not using ceqsalt 3462. (Contributed by NM, 29-Oct-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Revised by BJ, 29-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
Theorem | ceqsal 3466* | A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.) |
⊢ Ⅎ𝑥𝜓 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) | ||
Theorem | ceqsalv 3467* | A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.) Avoid ax-12 2171. (Revised by SN, 8-Sep-2024.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) | ||
Theorem | ceqsalvOLD 3468* | Obsolete version of ceqsalv 3467 as of 8-Sep-2024. (Contributed by NM, 18-Aug-1993.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) | ||
Theorem | ceqsralv 3469* | Restricted quantifier version of ceqsalv 3467. (Contributed by NM, 21-Jun-2013.) Avoid ax-9 2116, ax-12 2171, ax-ext 2709. (Revised by SN, 8-Sep-2024.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
Theorem | ceqsralvOLD 3470* | Obsolete version of ceqsalv 3467 as of 8-Sep-2024. (Contributed by NM, 21-Jun-2013.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
Theorem | gencl 3471* | Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.) |
⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝐵)) & ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) & ⊢ (𝜒 → 𝜑) ⇒ ⊢ (𝜃 → 𝜓) | ||
Theorem | 2gencl 3472* | Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.) |
⊢ (𝐶 ∈ 𝑆 ↔ ∃𝑥 ∈ 𝑅 𝐴 = 𝐶) & ⊢ (𝐷 ∈ 𝑆 ↔ ∃𝑦 ∈ 𝑅 𝐵 = 𝐷) & ⊢ (𝐴 = 𝐶 → (𝜑 ↔ 𝜓)) & ⊢ (𝐵 = 𝐷 → (𝜓 ↔ 𝜒)) & ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) → 𝜑) ⇒ ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆) → 𝜒) | ||
Theorem | 3gencl 3473* | Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.) |
⊢ (𝐷 ∈ 𝑆 ↔ ∃𝑥 ∈ 𝑅 𝐴 = 𝐷) & ⊢ (𝐹 ∈ 𝑆 ↔ ∃𝑦 ∈ 𝑅 𝐵 = 𝐹) & ⊢ (𝐺 ∈ 𝑆 ↔ ∃𝑧 ∈ 𝑅 𝐶 = 𝐺) & ⊢ (𝐴 = 𝐷 → (𝜑 ↔ 𝜓)) & ⊢ (𝐵 = 𝐹 → (𝜓 ↔ 𝜒)) & ⊢ (𝐶 = 𝐺 → (𝜒 ↔ 𝜃)) & ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) → 𝜑) ⇒ ⊢ ((𝐷 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆) → 𝜃) | ||
Theorem | cgsexg 3474* | Implicit substitution inference for general classes. (Contributed by NM, 26-Aug-2007.) |
⊢ (𝑥 = 𝐴 → 𝜒) & ⊢ (𝜒 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∃𝑥(𝜒 ∧ 𝜑) ↔ 𝜓)) | ||
Theorem | cgsex2g 3475* | Implicit substitution inference for general classes. (Contributed by NM, 26-Jul-1995.) |
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜒) & ⊢ (𝜒 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥∃𝑦(𝜒 ∧ 𝜑) ↔ 𝜓)) | ||
Theorem | cgsex4g 3476* | An implicit substitution inference for 4 general classes. (Contributed by NM, 5-Aug-1995.) Avoid ax-10 2137, ax-11 2154. (Revised by Gino Giotto, 28-Jun-2024.) |
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) → 𝜒) & ⊢ (𝜒 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆)) → (∃𝑥∃𝑦∃𝑧∃𝑤(𝜒 ∧ 𝜑) ↔ 𝜓)) | ||
Theorem | cgsex4gOLD 3477* | Obsolete version of cgsex4g 3476 as of 28-Jun-2024. (Contributed by NM, 5-Aug-1995.) Avoid ax-10 2137. (Revised by Gino Giotto, 20-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) → 𝜒) & ⊢ (𝜒 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆)) → (∃𝑥∃𝑦∃𝑧∃𝑤(𝜒 ∧ 𝜑) ↔ 𝜓)) | ||
Theorem | ceqsex 3478* | Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) (Revised by Mario Carneiro, 10-Oct-2016.) |
⊢ Ⅎ𝑥𝜓 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) | ||
Theorem | ceqsexv 3479* | Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) Avoid ax-12 2171. (Revised by Gino Giotto, 12-Oct-2024.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) | ||
Theorem | ceqsexvOLD 3480* | Obsolete version of ceqsexv 3479 as of 12-Oct-2024. (Contributed by NM, 2-Mar-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) | ||
Theorem | ceqsexv2d 3481* | Elimination of an existential quantifier, using implicit substitution. (Contributed by Thierry Arnoux, 10-Sep-2016.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜓 ⇒ ⊢ ∃𝑥𝜑 | ||
Theorem | ceqsex2 3482* | Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.) |
⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜒 & ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑) ↔ 𝜒) | ||
Theorem | ceqsex2v 3483* | Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.) Avoid ax-10 2137 and ax-11 2154. (Revised by Gino Giotto, 20-Aug-2023.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑) ↔ 𝜒) | ||
Theorem | ceqsex3v 3484* | Elimination of three existential quantifiers, using implicit substitution. (Contributed by NM, 16-Aug-2011.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) ⇒ ⊢ (∃𝑥∃𝑦∃𝑧((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ 𝜑) ↔ 𝜃) | ||
Theorem | ceqsex4v 3485* | Elimination of four existential quantifiers, using implicit substitution. (Contributed by NM, 23-Sep-2011.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ (𝑤 = 𝐷 → (𝜃 ↔ 𝜏)) ⇒ ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ 𝜑) ↔ 𝜏) | ||
Theorem | ceqsex6v 3486* | Elimination of six existential quantifiers, using implicit substitution. (Contributed by NM, 21-Sep-2011.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V & ⊢ 𝐸 ∈ V & ⊢ 𝐹 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ (𝑤 = 𝐷 → (𝜃 ↔ 𝜏)) & ⊢ (𝑣 = 𝐸 → (𝜏 ↔ 𝜂)) & ⊢ (𝑢 = 𝐹 → (𝜂 ↔ 𝜁)) ⇒ ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ (𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ 𝜑) ↔ 𝜁) | ||
Theorem | ceqsex8v 3487* | Elimination of eight existential quantifiers, using implicit substitution. (Contributed by NM, 23-Sep-2011.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V & ⊢ 𝐸 ∈ V & ⊢ 𝐹 ∈ V & ⊢ 𝐺 ∈ V & ⊢ 𝐻 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ (𝑤 = 𝐷 → (𝜃 ↔ 𝜏)) & ⊢ (𝑣 = 𝐸 → (𝜏 ↔ 𝜂)) & ⊢ (𝑢 = 𝐹 → (𝜂 ↔ 𝜁)) & ⊢ (𝑡 = 𝐺 → (𝜁 ↔ 𝜎)) & ⊢ (𝑠 = 𝐻 → (𝜎 ↔ 𝜌)) ⇒ ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤∃𝑣∃𝑢∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑) ↔ 𝜌) | ||
Theorem | gencbvex 3488* | Change of bound variable using implicit substitution. (Contributed by NM, 17-May-1996.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
⊢ 𝐴 ∈ V & ⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) & ⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) ⇒ ⊢ (∃𝑥(𝜒 ∧ 𝜑) ↔ ∃𝑦(𝜃 ∧ 𝜓)) | ||
Theorem | gencbvex2 3489* | Restatement of gencbvex 3488 with weaker hypotheses. (Contributed by Jeff Hankins, 6-Dec-2006.) |
⊢ 𝐴 ∈ V & ⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) & ⊢ (𝜃 → ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) ⇒ ⊢ (∃𝑥(𝜒 ∧ 𝜑) ↔ ∃𝑦(𝜃 ∧ 𝜓)) | ||
Theorem | gencbval 3490* | Change of bound variable using implicit substitution. (Contributed by NM, 17-May-1996.) |
⊢ 𝐴 ∈ V & ⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) & ⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) ⇒ ⊢ (∀𝑥(𝜒 → 𝜑) ↔ ∀𝑦(𝜃 → 𝜓)) | ||
Theorem | sbhypf 3491* | Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf 3861. (Contributed by Raph Levien, 10-Apr-2004.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) | ||
Theorem | vtoclgft 3492 | Closed theorem form of vtoclgf 3503. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof shortened by JJ, 11-Aug-2021.) Avoid ax-13 2372. (Revised by Gino Giotto, 6-Oct-2023.) |
⊢ (((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ 𝑉) → 𝜓) | ||
Theorem | vtocldf 3493 | Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝜓) & ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜒) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | vtocld 3494* | Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.) Avoid ax-10 2137, ax-11 2154, ax-12 2171. (Revised by SN, 2-Sep-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | vtocldOLD 3495* | Obsolete version of vtocld 3494 as of 2-Sep-2024. (Contributed by Mario Carneiro, 15-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | vtocl2d 3496* | Implicit substitution of two classes for two setvar variables. (Contributed by Thierry Arnoux, 25-Aug-2020.) (Revised by BTernaryTau, 19-Oct-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | vtoclf 3497* | Implicit substitution of a class for a setvar variable. This is a generalization of chvar 2395. (Contributed by NM, 30-Aug-1993.) |
⊢ Ⅎ𝑥𝜓 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||
Theorem | vtocl 3498* | Implicit substitution of a class for a setvar variable. See also vtoclALT 3499. (Contributed by NM, 30-Aug-1993.) Remove dependency on ax-10 2137. (Revised by BJ, 29-Nov-2020.) (Proof shortened by SN, 20-Apr-2024.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||
Theorem | vtoclALT 3499* | Alternate proof of vtocl 3498. Shorter but requires more axioms. (Contributed by NM, 30-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||
Theorem | vtocl2 3500* | Implicit substitution of classes for setvar variables. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |