MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reueqd Structured version   Visualization version   GIF version

Theorem reueqd 3344
Description: Equality deduction for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.)
Hypothesis
Ref Expression
raleqd.1 (𝐴 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
reueqd (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem reueqd
StepHypRef Expression
1 reueq1 3332 . 2 (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜑))
2 raleqd.1 . . 3 (𝐴 = 𝐵 → (𝜑𝜓))
32reubidv 3314 . 2 (𝐴 = 𝐵 → (∃!𝑥𝐵 𝜑 ↔ ∃!𝑥𝐵 𝜓))
41, 3bitrd 271 1 (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1601  ∃!wreu 3092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-ext 2754
This theorem depends on definitions:  df-bi 199  df-an 387  df-ex 1824  df-mo 2551  df-eu 2587  df-cleq 2770  df-clel 2774  df-reu 3097
This theorem is referenced by:  aceq1  9273
  Copyright terms: Public domain W3C validator