![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reueqd | Structured version Visualization version GIF version |
Description: Equality deduction for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.) |
Ref | Expression |
---|---|
rmoeqd.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
reueqd | ⊢ (𝐴 = 𝐵 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reueq1 3415 | . 2 ⊢ (𝐴 = 𝐵 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐵 𝜑)) | |
2 | rmoeqd.1 | . . 3 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
3 | 2 | reubidv 3396 | . 2 ⊢ (𝐴 = 𝐵 → (∃!𝑥 ∈ 𝐵 𝜑 ↔ ∃!𝑥 ∈ 𝐵 𝜓)) |
4 | 1, 3 | bitrd 279 | 1 ⊢ (𝐴 = 𝐵 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∃!wreu 3376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-mo 2538 df-eu 2567 df-cleq 2727 df-rex 3069 df-rmo 3378 df-reu 3379 |
This theorem is referenced by: aceq1 10155 |
Copyright terms: Public domain | W3C validator |