Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rmobidv | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
rmobidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rmobidv | ⊢ (𝜑 → (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmobidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | adantr 484 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
3 | 2 | rmobidva 3295 | 1 ⊢ (𝜑 → (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∈ wcel 2113 ∃*wrmo 3056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-12 2178 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1787 df-nf 1791 df-mo 2540 df-rmo 3061 |
This theorem is referenced by: rmoeqd 3318 brdom7disj 10024 ddemeas 31766 poimirlem26 35415 |
Copyright terms: Public domain | W3C validator |