Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspec3 | Structured version Visualization version GIF version |
Description: Specialization rule for restricted quantification, with three quantifiers. (Contributed by NM, 20-Nov-1994.) |
Ref | Expression |
---|---|
rspec3.1 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 |
Ref | Expression |
---|---|
rspec3 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspec3.1 | . . . 4 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 | |
2 | 1 | rspec2 3123 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∀𝑧 ∈ 𝐶 𝜑) |
3 | 2 | r19.21bi 3121 | . 2 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶) → 𝜑) |
4 | 3 | 3impa 1111 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 ∈ wcel 2114 ∀wral 3053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-12 2179 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1090 df-ex 1787 df-ral 3058 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |