![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r2alf | Structured version Visualization version GIF version |
Description: Double restricted universal quantification. For a version based on fewer axioms see r2al 3190. (Contributed by Mario Carneiro, 14-Oct-2016.) Use r2allem 3138. (Revised by Wolf Lammen, 9-Jan-2020.) |
Ref | Expression |
---|---|
r2alf.1 | ⊢ Ⅎ𝑦𝐴 |
Ref | Expression |
---|---|
r2alf | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r2alf.1 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
2 | 1 | nfcri 2886 | . . 3 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 |
3 | 2 | 19.21 2196 | . 2 ⊢ (∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐵 → 𝜑))) |
4 | 3 | r2allem 3138 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1532 ∈ wcel 2099 Ⅎwnfc 2879 ∀wral 3057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-12 2167 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-nf 1779 df-clel 2806 df-nfc 2881 df-ral 3058 |
This theorem is referenced by: r2exf 3275 ralcomf 3295 |
Copyright terms: Public domain | W3C validator |