![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r2alf | Structured version Visualization version GIF version |
Description: Double restricted universal quantification. For a version based on fewer axioms see r2al 3193. (Contributed by Mario Carneiro, 14-Oct-2016.) Use r2allem 3140. (Revised by Wolf Lammen, 9-Jan-2020.) |
Ref | Expression |
---|---|
r2alf.1 | ⊢ Ⅎ𝑦𝐴 |
Ref | Expression |
---|---|
r2alf | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r2alf.1 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
2 | 1 | nfcri 2895 | . . 3 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 |
3 | 2 | 19.21 2205 | . 2 ⊢ (∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐵 → 𝜑))) |
4 | 3 | r2allem 3140 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 ∈ wcel 2106 Ⅎwnfc 2888 ∀wral 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-12 2175 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-nf 1781 df-clel 2814 df-nfc 2890 df-ral 3060 |
This theorem is referenced by: r2exf 3280 ralcomf 3300 |
Copyright terms: Public domain | W3C validator |