| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r2alf | Structured version Visualization version GIF version | ||
| Description: Double restricted universal quantification. For a version based on fewer axioms see r2al 3168. (Contributed by Mario Carneiro, 14-Oct-2016.) Use r2allem 3120. (Revised by Wolf Lammen, 9-Jan-2020.) |
| Ref | Expression |
|---|---|
| r2alf.1 | ⊢ Ⅎ𝑦𝐴 |
| Ref | Expression |
|---|---|
| r2alf | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r2alf.1 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
| 2 | 1 | nfcri 2886 | . . 3 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 |
| 3 | 2 | 19.21 2210 | . 2 ⊢ (∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐵 → 𝜑))) |
| 4 | 3 | r2allem 3120 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 ∈ wcel 2111 Ⅎwnfc 2879 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-clel 2806 df-nfc 2881 df-ral 3048 |
| This theorem is referenced by: r2exf 3254 ralcomf 3270 |
| Copyright terms: Public domain | W3C validator |