MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r2alf Structured version   Visualization version   GIF version

Theorem r2alf 3287
Description: Double restricted universal quantification. For a version based on fewer axioms see r2al 3201. (Contributed by Mario Carneiro, 14-Oct-2016.) Use r2allem 3148. (Revised by Wolf Lammen, 9-Jan-2020.)
Hypothesis
Ref Expression
r2alf.1 𝑦𝐴
Assertion
Ref Expression
r2alf (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem r2alf
StepHypRef Expression
1 r2alf.1 . . . 4 𝑦𝐴
21nfcri 2900 . . 3 𝑦 𝑥𝐴
3219.21 2208 . 2 (∀𝑦(𝑥𝐴 → (𝑦𝐵𝜑)) ↔ (𝑥𝐴 → ∀𝑦(𝑦𝐵𝜑)))
43r2allem 3148 1 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535  wcel 2108  wnfc 2893  wral 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-nf 1782  df-clel 2819  df-nfc 2895  df-ral 3068
This theorem is referenced by:  r2exf  3288  ralcomf  3308
  Copyright terms: Public domain W3C validator