Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.21bi | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 20-Nov-1994.) (Proof shortened by Wolf Lammen, 11-Jun-2023.) |
Ref | Expression |
---|---|
r19.21bi.1 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Ref | Expression |
---|---|
r19.21bi | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.21bi.1 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | |
2 | rspa 3130 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜓 ∧ 𝑥 ∈ 𝐴) → 𝜓) | |
3 | 1, 2 | sylan 579 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) |
Copyright terms: Public domain | W3C validator |