Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sb2imi | Structured version Visualization version GIF version |
Description: Distribute substitution over implication. Compare al2imi 1819. (Contributed by Steven Nguyen, 13-Aug-2023.) |
Ref | Expression |
---|---|
sb2imi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
sb2imi | ⊢ ([𝑡 / 𝑥]𝜑 → ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥]𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb2imi.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | sbimi 2078 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥](𝜓 → 𝜒)) |
3 | sbi1 2075 | . 2 ⊢ ([𝑡 / 𝑥](𝜓 → 𝜒) → ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥]𝜒)) | |
4 | 2, 3 | syl 17 | 1 ⊢ ([𝑡 / 𝑥]𝜑 → ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥]𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-sb 2069 |
This theorem is referenced by: sban 2084 sbn1 2107 |
Copyright terms: Public domain | W3C validator |