| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sb2imi | Structured version Visualization version GIF version | ||
| Description: Distribute substitution over implication. Compare al2imi 1815. (Contributed by Steven Nguyen, 13-Aug-2023.) |
| Ref | Expression |
|---|---|
| sb2imi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| sb2imi | ⊢ ([𝑡 / 𝑥]𝜑 → ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥]𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb2imi.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | sbimi 2074 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥](𝜓 → 𝜒)) |
| 3 | sbi1 2071 | . 2 ⊢ ([𝑡 / 𝑥](𝜓 → 𝜒) → ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥]𝜒)) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ ([𝑡 / 𝑥]𝜑 → ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥]𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-sb 2065 |
| This theorem is referenced by: sban 2080 sbn1 2107 |
| Copyright terms: Public domain | W3C validator |