| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbi1 | Structured version Visualization version GIF version | ||
| Description: Distribute substitution over implication. (Contributed by NM, 14-May-1993.) Remove dependencies on axioms. (Revised by Steven Nguyen, 24-Jul-2023.) |
| Ref | Expression |
|---|---|
| sbi1 | ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sb 2065 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧 → (𝜑 → 𝜓)))) | |
| 2 | ax-2 7 | . . . . . 6 ⊢ ((𝑥 = 𝑧 → (𝜑 → 𝜓)) → ((𝑥 = 𝑧 → 𝜑) → (𝑥 = 𝑧 → 𝜓))) | |
| 3 | 2 | al2imi 1815 | . . . . 5 ⊢ (∀𝑥(𝑥 = 𝑧 → (𝜑 → 𝜓)) → (∀𝑥(𝑥 = 𝑧 → 𝜑) → ∀𝑥(𝑥 = 𝑧 → 𝜓))) |
| 4 | 3 | imim3i 64 | . . . 4 ⊢ ((𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧 → (𝜑 → 𝜓))) → ((𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧 → 𝜑)) → (𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧 → 𝜓)))) |
| 5 | 4 | al2imi 1815 | . . 3 ⊢ (∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧 → (𝜑 → 𝜓))) → (∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧 → 𝜑)) → ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧 → 𝜓)))) |
| 6 | df-sb 2065 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) | |
| 7 | df-sb 2065 | . . 3 ⊢ ([𝑦 / 𝑥]𝜓 ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧 → 𝜓))) | |
| 8 | 5, 6, 7 | 3imtr4g 296 | . 2 ⊢ (∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧 → (𝜑 → 𝜓))) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
| 9 | 1, 8 | sylbi 217 | 1 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-sb 2065 |
| This theorem is referenced by: spsbim 2072 sbimi 2074 sb2imi 2075 sbim 2303 sbcim1 3842 2sb5ndVD 44930 2sb5ndALT 44952 |
| Copyright terms: Public domain | W3C validator |