Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbn1 | Structured version Visualization version GIF version |
Description: One direction of sbn 2281, using fewer axioms. Compare 19.2 1984. (Contributed by Steven Nguyen, 18-Aug-2023.) |
Ref | Expression |
---|---|
sbn1 | ⊢ ([𝑡 / 𝑥] ¬ 𝜑 → ¬ [𝑡 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsb 2108 | . . 3 ⊢ (∀𝑥 ¬ ⊥ → ¬ [𝑡 / 𝑥]⊥) | |
2 | fal 1556 | . . 3 ⊢ ¬ ⊥ | |
3 | 1, 2 | mpg 1804 | . 2 ⊢ ¬ [𝑡 / 𝑥]⊥ |
4 | pm2.21 123 | . . 3 ⊢ (¬ 𝜑 → (𝜑 → ⊥)) | |
5 | 4 | sb2imi 2082 | . 2 ⊢ ([𝑡 / 𝑥] ¬ 𝜑 → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]⊥)) |
6 | 3, 5 | mtoi 198 | 1 ⊢ ([𝑡 / 𝑥] ¬ 𝜑 → ¬ [𝑡 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ⊥wfal 1554 [wsb 2071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 |
This theorem depends on definitions: df-bi 206 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 |
This theorem is referenced by: bj-ab0 35089 |
Copyright terms: Public domain | W3C validator |