| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbn1 | Structured version Visualization version GIF version | ||
| Description: One direction of sbn 2279, using fewer axioms. Compare 19.2 1975. (Contributed by Steven Nguyen, 18-Aug-2023.) |
| Ref | Expression |
|---|---|
| sbn1 | ⊢ ([𝑡 / 𝑥] ¬ 𝜑 → ¬ [𝑡 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsb 2105 | . . 3 ⊢ (∀𝑥 ¬ ⊥ → ¬ [𝑡 / 𝑥]⊥) | |
| 2 | fal 1553 | . . 3 ⊢ ¬ ⊥ | |
| 3 | 1, 2 | mpg 1796 | . 2 ⊢ ¬ [𝑡 / 𝑥]⊥ |
| 4 | pm2.21 123 | . . 3 ⊢ (¬ 𝜑 → (𝜑 → ⊥)) | |
| 5 | 4 | sb2imi 2074 | . 2 ⊢ ([𝑡 / 𝑥] ¬ 𝜑 → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]⊥)) |
| 6 | 3, 5 | mtoi 199 | 1 ⊢ ([𝑡 / 𝑥] ¬ 𝜑 → ¬ [𝑡 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ⊥wfal 1551 [wsb 2063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 |
| This theorem depends on definitions: df-bi 207 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 |
| This theorem is referenced by: bj-ab0 36910 |
| Copyright terms: Public domain | W3C validator |