Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbn1 | Structured version Visualization version GIF version |
Description: One direction of sbn 2280, using fewer axioms. Compare 19.2 1981. (Contributed by Steven Nguyen, 18-Aug-2023.) |
Ref | Expression |
---|---|
sbn1 | ⊢ ([𝑡 / 𝑥] ¬ 𝜑 → ¬ [𝑡 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsb 2106 | . . 3 ⊢ (∀𝑥 ¬ ⊥ → ¬ [𝑡 / 𝑥]⊥) | |
2 | fal 1553 | . . 3 ⊢ ¬ ⊥ | |
3 | 1, 2 | mpg 1801 | . 2 ⊢ ¬ [𝑡 / 𝑥]⊥ |
4 | pm2.21 123 | . . 3 ⊢ (¬ 𝜑 → (𝜑 → ⊥)) | |
5 | 4 | sb2imi 2079 | . 2 ⊢ ([𝑡 / 𝑥] ¬ 𝜑 → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]⊥)) |
6 | 3, 5 | mtoi 198 | 1 ⊢ ([𝑡 / 𝑥] ¬ 𝜑 → ¬ [𝑡 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ⊥wfal 1551 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 |
This theorem depends on definitions: df-bi 206 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 |
This theorem is referenced by: bj-ab0 35020 |
Copyright terms: Public domain | W3C validator |