MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbn1 Structured version   Visualization version   GIF version

Theorem sbn1 2105
Description: One direction of sbn 2279, using fewer axioms. Compare 19.2 1974. (Contributed by Steven Nguyen, 18-Aug-2023.)
Assertion
Ref Expression
sbn1 ([𝑡 / 𝑥] ¬ 𝜑 → ¬ [𝑡 / 𝑥]𝜑)

Proof of Theorem sbn1
StepHypRef Expression
1 nsb 2104 . . 3 (∀𝑥 ¬ ⊥ → ¬ [𝑡 / 𝑥]⊥)
2 fal 1551 . . 3 ¬ ⊥
31, 2mpg 1794 . 2 ¬ [𝑡 / 𝑥]⊥
4 pm2.21 123 . . 3 𝜑 → (𝜑 → ⊥))
54sb2imi 2073 . 2 ([𝑡 / 𝑥] ¬ 𝜑 → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]⊥))
63, 5mtoi 199 1 ([𝑡 / 𝑥] ¬ 𝜑 → ¬ [𝑡 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wfal 1549  [wsb 2062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965
This theorem depends on definitions:  df-bi 207  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063
This theorem is referenced by:  bj-ab0  36891
  Copyright terms: Public domain W3C validator