Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbimi | Structured version Visualization version GIF version |
Description: Distribute substitution over implication. (Contributed by NM, 25-Jun-1998.) Revise df-sb 2075. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Steven Nguyen, 24-Jul-2023.) |
Ref | Expression |
---|---|
sbimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
sbimi | ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | sbt 2076 | . 2 ⊢ [𝑡 / 𝑥](𝜑 → 𝜓) |
3 | sbi1 2081 | . 2 ⊢ ([𝑡 / 𝑥](𝜑 → 𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 [wsb 2074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 |
This theorem depends on definitions: df-bi 210 df-sb 2075 |
This theorem is referenced by: sb2imi 2085 sbbii 2086 sban 2090 sb4av 2245 sbi2 2306 hbsb3 2491 sb6f 2501 sbie 2506 2mo 2651 elrabi 3582 fmptdF 30568 funcnv4mpt 30581 disjdsct 30610 measiuns 31755 ballotlemodife 32034 bj-hbsb3v 34628 bj-sbidmOLD 34665 mptsnunlem 35132 sbor2 39768 |
Copyright terms: Public domain | W3C validator |