| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbimi | Structured version Visualization version GIF version | ||
| Description: Distribute substitution over implication. (Contributed by NM, 25-Jun-1998.) Revise df-sb 2066. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Steven Nguyen, 24-Jul-2023.) |
| Ref | Expression |
|---|---|
| sbimi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| sbimi | ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | sbt 2067 | . 2 ⊢ [𝑡 / 𝑥](𝜑 → 𝜓) |
| 3 | sbi1 2072 | . 2 ⊢ ([𝑡 / 𝑥](𝜑 → 𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-sb 2066 |
| This theorem is referenced by: sb2imi 2076 sbbii 2077 sban 2081 hbsbw 2172 sb4av 2245 sbi2 2302 hbsb3 2485 sb6f 2495 sbie 2500 2mo 2641 sbhypf 3501 elrabi 3645 fmptdF 32613 funcnv4mpt 32626 disjdsct 32659 measiuns 34183 ballotlemodife 34465 subsym1 36400 bj-hbsb3v 36788 bj-sbidmOLD 36823 mptsnunlem 37311 sbor2 42185 |
| Copyright terms: Public domain | W3C validator |