| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbimi | Structured version Visualization version GIF version | ||
| Description: Distribute substitution over implication. (Contributed by NM, 25-Jun-1998.) Revise df-sb 2066. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Steven Nguyen, 24-Jul-2023.) |
| Ref | Expression |
|---|---|
| sbimi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| sbimi | ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | sbt 2067 | . 2 ⊢ [𝑡 / 𝑥](𝜑 → 𝜓) |
| 3 | sbi1 2072 | . 2 ⊢ ([𝑡 / 𝑥](𝜑 → 𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-sb 2066 |
| This theorem is referenced by: sb2imi 2076 sbbii 2077 sban 2081 hbsbw 2172 sb4av 2245 sbi2 2302 hbsb3 2486 sb6f 2496 sbie 2501 2mo 2642 sbhypf 3513 elrabi 3657 fmptdF 32587 funcnv4mpt 32600 disjdsct 32633 measiuns 34214 ballotlemodife 34496 subsym1 36422 bj-hbsb3v 36810 bj-sbidmOLD 36845 mptsnunlem 37333 sbor2 42207 |
| Copyright terms: Public domain | W3C validator |