| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbimi | Structured version Visualization version GIF version | ||
| Description: Distribute substitution over implication. (Contributed by NM, 25-Jun-1998.) Revise df-sb 2066. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Steven Nguyen, 24-Jul-2023.) |
| Ref | Expression |
|---|---|
| sbimi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| sbimi | ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | sbt 2067 | . 2 ⊢ [𝑡 / 𝑥](𝜑 → 𝜓) |
| 3 | sbi1 2072 | . 2 ⊢ ([𝑡 / 𝑥](𝜑 → 𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-sb 2066 |
| This theorem is referenced by: sb2imi 2076 sbbii 2077 sban 2081 hbsbw 2172 sb4av 2245 sbi2 2303 hbsb3 2492 sb6f 2502 sbie 2507 2mo 2648 sbhypf 3528 elrabi 3671 fmptdF 32639 funcnv4mpt 32652 disjdsct 32685 measiuns 34253 ballotlemodife 34535 subsym1 36450 bj-hbsb3v 36838 bj-sbidmOLD 36873 mptsnunlem 37361 sbor2 42230 |
| Copyright terms: Public domain | W3C validator |