| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbimi | Structured version Visualization version GIF version | ||
| Description: Distribute substitution over implication. (Contributed by NM, 25-Jun-1998.) Revise df-sb 2068. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Steven Nguyen, 24-Jul-2023.) |
| Ref | Expression |
|---|---|
| sbimi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| sbimi | ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | sbt 2071 | . 2 ⊢ [𝑡 / 𝑥](𝜑 → 𝜓) |
| 3 | sbi1 2076 | . 2 ⊢ ([𝑡 / 𝑥](𝜑 → 𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 |
| This theorem is referenced by: sb2imi 2080 sbbii 2081 sban 2085 hbsbw 2176 sb4av 2249 sbi2 2306 hbsb3 2489 sb6f 2499 sbie 2504 2mo 2645 sbhypf 3499 elrabi 3639 fmptdF 32640 funcnv4mpt 32653 disjdsct 32688 measiuns 34251 ballotlemodife 34532 subsym1 36492 bj-hbsb3v 36880 bj-sbidmOLD 36915 mptsnunlem 37403 sbor2 42326 |
| Copyright terms: Public domain | W3C validator |