MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbimi Structured version   Visualization version   GIF version

Theorem sbimi 2075
Description: Distribute substitution over implication. (Contributed by NM, 25-Jun-1998.) Revise df-sb 2066. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Steven Nguyen, 24-Jul-2023.)
Hypothesis
Ref Expression
sbimi.1 (𝜑𝜓)
Assertion
Ref Expression
sbimi ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)

Proof of Theorem sbimi
StepHypRef Expression
1 sbimi.1 . . 3 (𝜑𝜓)
21sbt 2067 . 2 [𝑡 / 𝑥](𝜑𝜓)
3 sbi1 2072 . 2 ([𝑡 / 𝑥](𝜑𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))
42, 3ax-mp 5 1 ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsb 2065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-sb 2066
This theorem is referenced by:  sb2imi  2076  sbbii  2077  sban  2081  hbsbw  2172  sb4av  2245  sbi2  2302  hbsb3  2486  sb6f  2496  sbie  2501  2mo  2642  sbhypf  3513  elrabi  3657  fmptdF  32587  funcnv4mpt  32600  disjdsct  32633  measiuns  34214  ballotlemodife  34496  subsym1  36422  bj-hbsb3v  36810  bj-sbidmOLD  36845  mptsnunlem  37333  sbor2  42207
  Copyright terms: Public domain W3C validator