![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbimi | Structured version Visualization version GIF version |
Description: Distribute substitution over implication. (Contributed by NM, 25-Jun-1998.) Revise df-sb 2069. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Steven Nguyen, 24-Jul-2023.) |
Ref | Expression |
---|---|
sbimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
sbimi | ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | sbt 2070 | . 2 ⊢ [𝑡 / 𝑥](𝜑 → 𝜓) |
3 | sbi1 2075 | . 2 ⊢ ([𝑡 / 𝑥](𝜑 → 𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-sb 2069 |
This theorem is referenced by: sb2imi 2079 sbbii 2080 sban 2084 sb4av 2237 sbi2 2299 hbsb3 2487 sb6f 2497 sbie 2502 2mo 2645 sbhypf 3539 elrabi 3678 fmptdF 31881 funcnv4mpt 31894 disjdsct 31924 measiuns 33215 ballotlemodife 33496 subsym1 35312 bj-hbsb3v 35693 bj-sbidmOLD 35729 mptsnunlem 36219 sbor2 41028 |
Copyright terms: Public domain | W3C validator |