MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbimi Structured version   Visualization version   GIF version

Theorem sbimi 2075
Description: Distribute substitution over implication. (Contributed by NM, 25-Jun-1998.) Revise df-sb 2066. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Steven Nguyen, 24-Jul-2023.)
Hypothesis
Ref Expression
sbimi.1 (𝜑𝜓)
Assertion
Ref Expression
sbimi ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)

Proof of Theorem sbimi
StepHypRef Expression
1 sbimi.1 . . 3 (𝜑𝜓)
21sbt 2067 . 2 [𝑡 / 𝑥](𝜑𝜓)
3 sbi1 2072 . 2 ([𝑡 / 𝑥](𝜑𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))
42, 3ax-mp 5 1 ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsb 2065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 206  df-sb 2066
This theorem is referenced by:  sb2imi  2076  sbbii  2077  sban  2081  sb4av  2234  sbi2  2296  hbsb3  2484  sb6f  2494  sbie  2499  2mo  2642  sbhypf  3537  elrabi  3678  fmptdF  32146  funcnv4mpt  32159  disjdsct  32189  measiuns  33511  ballotlemodife  33792  subsym1  35617  bj-hbsb3v  35998  bj-sbidmOLD  36034  mptsnunlem  36524  sbor2  41336
  Copyright terms: Public domain W3C validator