MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbimi Structured version   Visualization version   GIF version

Theorem sbimi 2084
Description: Distribute substitution over implication. (Contributed by NM, 25-Jun-1998.) Revise df-sb 2075. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Steven Nguyen, 24-Jul-2023.)
Hypothesis
Ref Expression
sbimi.1 (𝜑𝜓)
Assertion
Ref Expression
sbimi ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)

Proof of Theorem sbimi
StepHypRef Expression
1 sbimi.1 . . 3 (𝜑𝜓)
21sbt 2076 . 2 [𝑡 / 𝑥](𝜑𝜓)
3 sbi1 2081 . 2 ([𝑡 / 𝑥](𝜑𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))
42, 3ax-mp 5 1 ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsb 2074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816
This theorem depends on definitions:  df-bi 210  df-sb 2075
This theorem is referenced by:  sb2imi  2085  sbbii  2086  sban  2090  sb4av  2245  sbi2  2306  hbsb3  2491  sb6f  2501  sbie  2506  2mo  2651  elrabi  3582  fmptdF  30568  funcnv4mpt  30581  disjdsct  30610  measiuns  31755  ballotlemodife  32034  bj-hbsb3v  34628  bj-sbidmOLD  34665  mptsnunlem  35132  sbor2  39768
  Copyright terms: Public domain W3C validator