MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbimi Structured version   Visualization version   GIF version

Theorem sbimi 2077
Description: Distribute substitution over implication. (Contributed by NM, 25-Jun-1998.) Revise df-sb 2068. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Steven Nguyen, 24-Jul-2023.)
Hypothesis
Ref Expression
sbimi.1 (𝜑𝜓)
Assertion
Ref Expression
sbimi ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)

Proof of Theorem sbimi
StepHypRef Expression
1 sbimi.1 . . 3 (𝜑𝜓)
21sbt 2069 . 2 [𝑡 / 𝑥](𝜑𝜓)
3 sbi1 2074 . 2 ([𝑡 / 𝑥](𝜑𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))
42, 3ax-mp 5 1 ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-sb 2068
This theorem is referenced by:  sb2imi  2078  sbbii  2079  sban  2083  hbsbw  2174  sb4av  2247  sbi2  2304  hbsb3  2487  sb6f  2497  sbie  2502  2mo  2643  sbhypf  3499  elrabi  3643  fmptdF  32636  funcnv4mpt  32649  disjdsct  32682  measiuns  34228  ballotlemodife  34509  subsym1  36467  bj-hbsb3v  36855  bj-sbidmOLD  36890  mptsnunlem  37378  sbor2  42251
  Copyright terms: Public domain W3C validator