MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbimi Structured version   Visualization version   GIF version

Theorem sbimi 2079
Description: Distribute substitution over implication. (Contributed by NM, 25-Jun-1998.) Revise df-sb 2068. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Steven Nguyen, 24-Jul-2023.)
Hypothesis
Ref Expression
sbimi.1 (𝜑𝜓)
Assertion
Ref Expression
sbimi ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)

Proof of Theorem sbimi
StepHypRef Expression
1 sbimi.1 . . 3 (𝜑𝜓)
21sbt 2071 . 2 [𝑡 / 𝑥](𝜑𝜓)
3 sbi1 2076 . 2 ([𝑡 / 𝑥](𝜑𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))
42, 3ax-mp 5 1 ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068
This theorem is referenced by:  sb2imi  2080  sbbii  2081  sban  2085  hbsbw  2176  sb4av  2249  sbi2  2306  hbsb3  2489  sb6f  2499  sbie  2504  2mo  2645  sbhypf  3499  elrabi  3639  fmptdF  32640  funcnv4mpt  32653  disjdsct  32688  measiuns  34251  ballotlemodife  34532  subsym1  36492  bj-hbsb3v  36880  bj-sbidmOLD  36915  mptsnunlem  37403  sbor2  42326
  Copyright terms: Public domain W3C validator