![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbimi | Structured version Visualization version GIF version |
Description: Distribute substitution over implication. (Contributed by NM, 25-Jun-1998.) Revise df-sb 2066. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Steven Nguyen, 24-Jul-2023.) |
Ref | Expression |
---|---|
sbimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
sbimi | ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | sbt 2067 | . 2 ⊢ [𝑡 / 𝑥](𝜑 → 𝜓) |
3 | sbi1 2072 | . 2 ⊢ ([𝑡 / 𝑥](𝜑 → 𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 [wsb 2065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
This theorem depends on definitions: df-bi 206 df-sb 2066 |
This theorem is referenced by: sb2imi 2076 sbbii 2077 sban 2081 sb4av 2234 sbi2 2296 hbsb3 2484 sb6f 2494 sbie 2499 2mo 2642 sbhypf 3537 elrabi 3678 fmptdF 32146 funcnv4mpt 32159 disjdsct 32189 measiuns 33511 ballotlemodife 33792 subsym1 35617 bj-hbsb3v 35998 bj-sbidmOLD 36034 mptsnunlem 36524 sbor2 41336 |
Copyright terms: Public domain | W3C validator |