MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbimi Structured version   Visualization version   GIF version

Theorem sbimi 2074
Description: Distribute substitution over implication. (Contributed by NM, 25-Jun-1998.) Revise df-sb 2065. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Steven Nguyen, 24-Jul-2023.)
Hypothesis
Ref Expression
sbimi.1 (𝜑𝜓)
Assertion
Ref Expression
sbimi ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)

Proof of Theorem sbimi
StepHypRef Expression
1 sbimi.1 . . 3 (𝜑𝜓)
21sbt 2066 . 2 [𝑡 / 𝑥](𝜑𝜓)
3 sbi1 2071 . 2 ([𝑡 / 𝑥](𝜑𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))
42, 3ax-mp 5 1 ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-sb 2065
This theorem is referenced by:  sb2imi  2075  sbbii  2076  sban  2080  hbsbw  2172  sb4av  2245  sbi2  2306  hbsb3  2495  sb6f  2505  sbie  2510  2mo  2651  sbhypf  3556  elrabi  3703  fmptdF  32674  funcnv4mpt  32687  disjdsct  32714  measiuns  34181  ballotlemodife  34462  subsym1  36393  bj-hbsb3v  36781  bj-sbidmOLD  36816  mptsnunlem  37304  sbor2  42205
  Copyright terms: Public domain W3C validator