Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbimi | Structured version Visualization version GIF version |
Description: Distribute substitution over implication. (Contributed by NM, 25-Jun-1998.) Revise df-sb 2071. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Steven Nguyen, 24-Jul-2023.) |
Ref | Expression |
---|---|
sbimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
sbimi | ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | sbt 2072 | . 2 ⊢ [𝑡 / 𝑥](𝜑 → 𝜓) |
3 | sbi1 2077 | . 2 ⊢ ([𝑡 / 𝑥](𝜑 → 𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 [wsb 2070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 |
This theorem depends on definitions: df-bi 206 df-sb 2071 |
This theorem is referenced by: sb2imi 2081 sbbii 2082 sban 2086 sb4av 2239 sbi2 2302 hbsb3 2492 sb6f 2502 sbie 2507 2mo 2651 elrabi 3619 fmptdF 30972 funcnv4mpt 30985 disjdsct 31014 measiuns 32164 ballotlemodife 32443 bj-hbsb3v 34976 bj-sbidmOLD 35013 mptsnunlem 35488 sbor2 40157 |
Copyright terms: Public domain | W3C validator |