![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbimi | Structured version Visualization version GIF version |
Description: Distribute substitution over implication. (Contributed by NM, 25-Jun-1998.) Revise df-sb 2063. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Steven Nguyen, 24-Jul-2023.) |
Ref | Expression |
---|---|
sbimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
sbimi | ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | sbt 2064 | . 2 ⊢ [𝑡 / 𝑥](𝜑 → 𝜓) |
3 | sbi1 2069 | . 2 ⊢ ([𝑡 / 𝑥](𝜑 → 𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 [wsb 2062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 |
This theorem depends on definitions: df-bi 207 df-sb 2063 |
This theorem is referenced by: sb2imi 2073 sbbii 2074 sban 2078 hbsbw 2169 sb4av 2242 sbi2 2301 hbsb3 2490 sb6f 2500 sbie 2505 2mo 2646 sbhypf 3544 elrabi 3690 fmptdF 32673 funcnv4mpt 32686 disjdsct 32718 measiuns 34198 ballotlemodife 34479 subsym1 36410 bj-hbsb3v 36798 bj-sbidmOLD 36833 mptsnunlem 37321 sbor2 42230 |
Copyright terms: Public domain | W3C validator |