| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbimi | Structured version Visualization version GIF version | ||
| Description: Distribute substitution over implication. (Contributed by NM, 25-Jun-1998.) Revise df-sb 2068. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Steven Nguyen, 24-Jul-2023.) |
| Ref | Expression |
|---|---|
| sbimi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| sbimi | ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | sbt 2069 | . 2 ⊢ [𝑡 / 𝑥](𝜑 → 𝜓) |
| 3 | sbi1 2074 | . 2 ⊢ ([𝑡 / 𝑥](𝜑 → 𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-sb 2068 |
| This theorem is referenced by: sb2imi 2078 sbbii 2079 sban 2083 hbsbw 2174 sb4av 2247 sbi2 2304 hbsb3 2487 sb6f 2497 sbie 2502 2mo 2643 sbhypf 3499 elrabi 3643 fmptdF 32636 funcnv4mpt 32649 disjdsct 32682 measiuns 34228 ballotlemodife 34509 subsym1 36467 bj-hbsb3v 36855 bj-sbidmOLD 36890 mptsnunlem 37378 sbor2 42251 |
| Copyright terms: Public domain | W3C validator |