Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sb3 | Structured version Visualization version GIF version |
Description: One direction of a simplified definition of substitution when variables are distinct. Usage of this theorem is discouraged because it depends on ax-13 2373. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 21-Feb-2024.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sb3 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb3b 2478 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
2 | 1 | biimprd 247 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1539 ∃wex 1785 [wsb 2070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-10 2140 ax-12 2174 ax-13 2373 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1786 df-nf 1790 df-sb 2071 |
This theorem is referenced by: sb3bOLD 2484 dfsb1 2486 |
Copyright terms: Public domain | W3C validator |