Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb3b Structured version   Visualization version   GIF version

Theorem sb3b 2499
 Description: Simplified definition of substitution when variables are distinct. This is the biconditional strengthening of sb3 2500. (Contributed by BJ, 6-Oct-2018.) Shorten sb3 2500. (Revised by Wolf Lammen, 21-Feb-2021.)
Assertion
Ref Expression
sb3b (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑)))

Proof of Theorem sb3b
StepHypRef Expression
1 sb4b 2497 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
2 equs5 2480 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
31, 2bitr4d 283 1 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 207   ∧ wa 396  ∀wal 1528  ∃wex 1773  [wsb 2062 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-10 2138  ax-12 2169  ax-13 2385 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-ex 1774  df-nf 1778  df-sb 2063 This theorem is referenced by:  sb3  2500  sb1  2501
 Copyright terms: Public domain W3C validator