MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb3b Structured version   Visualization version   GIF version

Theorem sb3b 2475
Description: Simplified definition of substitution when variables are distinct. This is the biconditional strengthening of sb3 2476. Usage of this theorem is discouraged because it depends on ax-13 2370. (Contributed by BJ, 6-Oct-2018.) Shorten sb3 2476. (Revised by Wolf Lammen, 21-Feb-2021.) (New usage is discouraged.)
Assertion
Ref Expression
sb3b (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑)))

Proof of Theorem sb3b
StepHypRef Expression
1 sb4b 2473 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
2 equs5 2458 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
31, 2bitr4d 281 1 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wal 1538  wex 1780  [wsb 2066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-10 2136  ax-12 2170  ax-13 2370
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1781  df-nf 1785  df-sb 2067
This theorem is referenced by:  sb3  2476  sb1  2477
  Copyright terms: Public domain W3C validator