|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sb1 | Structured version Visualization version GIF version | ||
| Description: One direction of a simplified definition of substitution. The converse requires either a disjoint variable condition (sb5 2276) or a nonfreeness hypothesis (sb5f 2503). Usage of this theorem is discouraged because it depends on ax-13 2377. Use the weaker sb1v 2087 when possible. (Contributed by NM, 13-May-1993.) Revise df-sb 2065. (Revised by Wolf Lammen, 21-Feb-2024.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| sb1 | ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | spsbe 2082 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥𝜑) | |
| 2 | pm3.2 469 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 → (𝑥 = 𝑦 ∧ 𝜑))) | |
| 3 | 2 | aleximi 1832 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | 
| 4 | 1, 3 | syl5 34 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | 
| 5 | sb3b 2481 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
| 6 | 5 | biimpd 229 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | 
| 7 | 4, 6 | pm2.61i 182 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 [wsb 2064 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 ax-13 2377 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 df-sb 2065 | 
| This theorem is referenced by: dfsb1 2486 sb4e 2490 | 
| Copyright terms: Public domain | W3C validator |