Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sb1 | Structured version Visualization version GIF version |
Description: One direction of a simplified definition of substitution. The converse requires either a disjoint variable condition (sb5 2274) or a non-freeness hypothesis (sb5f 2517). Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker sb1v 2093 when possible. (Contributed by NM, 13-May-1993.) Revise df-sb 2071. (Revised by Wolf Lammen, 21-Feb-2024.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sb1 | ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spsbe 2088 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥𝜑) | |
2 | pm3.2 473 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 → (𝑥 = 𝑦 ∧ 𝜑))) | |
3 | 2 | aleximi 1834 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
4 | 1, 3 | syl5 34 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
5 | sb3b 2491 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
6 | 5 | biimpd 232 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
7 | 4, 6 | pm2.61i 185 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∀wal 1537 ∃wex 1782 [wsb 2070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-10 2143 ax-12 2176 ax-13 2380 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-ex 1783 df-nf 1787 df-sb 2071 |
This theorem is referenced by: sb3bOLD 2498 dfsb1 2500 sb4e 2504 |
Copyright terms: Public domain | W3C validator |