MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb1 Structured version   Visualization version   GIF version

Theorem sb1 2469
Description: One direction of a simplified definition of substitution. The converse requires either a disjoint variable condition (sb5 2259) or a nonfreeness hypothesis (sb5f 2489). Usage of this theorem is discouraged because it depends on ax-13 2363. Use the weaker sb1v 2082 when possible. (Contributed by NM, 13-May-1993.) Revise df-sb 2060. (Revised by Wolf Lammen, 21-Feb-2024.) (New usage is discouraged.)
Assertion
Ref Expression
sb1 ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑))

Proof of Theorem sb1
StepHypRef Expression
1 spsbe 2077 . . 3 ([𝑦 / 𝑥]𝜑 → ∃𝑥𝜑)
2 pm3.2 469 . . . 4 (𝑥 = 𝑦 → (𝜑 → (𝑥 = 𝑦𝜑)))
32aleximi 1826 . . 3 (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜑 → ∃𝑥(𝑥 = 𝑦𝜑)))
41, 3syl5 34 . 2 (∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑)))
5 sb3b 2467 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑)))
65biimpd 228 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑)))
74, 6pm2.61i 182 1 ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1531  wex 1773  [wsb 2059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-10 2129  ax-12 2163  ax-13 2363
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ex 1774  df-nf 1778  df-sb 2060
This theorem is referenced by:  dfsb1  2472  sb4e  2476
  Copyright terms: Public domain W3C validator