MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmind2 Structured version   Visualization version   GIF version

Theorem prmind2 16318
Description: A variation on prmind 16319 assuming complete induction for primes. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
prmind.1 (𝑥 = 1 → (𝜑𝜓))
prmind.2 (𝑥 = 𝑦 → (𝜑𝜒))
prmind.3 (𝑥 = 𝑧 → (𝜑𝜃))
prmind.4 (𝑥 = (𝑦 · 𝑧) → (𝜑𝜏))
prmind.5 (𝑥 = 𝐴 → (𝜑𝜂))
prmind.6 𝜓
prmind2.7 ((𝑥 ∈ ℙ ∧ ∀𝑦 ∈ (1...(𝑥 − 1))𝜒) → 𝜑)
prmind2.8 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝜒𝜃) → 𝜏))
Assertion
Ref Expression
prmind2 (𝐴 ∈ ℕ → 𝜂)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝑥,𝑧,𝜒   𝜂,𝑥   𝜏,𝑥   𝜃,𝑥   𝑦,𝑧,𝜑
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑦)   𝜃(𝑦,𝑧)   𝜏(𝑦,𝑧)   𝜂(𝑦,𝑧)   𝐴(𝑦,𝑧)

Proof of Theorem prmind2
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmind.5 . 2 (𝑥 = 𝐴 → (𝜑𝜂))
2 oveq2 7263 . . . 4 (𝑛 = 1 → (1...𝑛) = (1...1))
32raleqdv 3339 . . 3 (𝑛 = 1 → (∀𝑥 ∈ (1...𝑛)𝜑 ↔ ∀𝑥 ∈ (1...1)𝜑))
4 oveq2 7263 . . . 4 (𝑛 = 𝑘 → (1...𝑛) = (1...𝑘))
54raleqdv 3339 . . 3 (𝑛 = 𝑘 → (∀𝑥 ∈ (1...𝑛)𝜑 ↔ ∀𝑥 ∈ (1...𝑘)𝜑))
6 oveq2 7263 . . . 4 (𝑛 = (𝑘 + 1) → (1...𝑛) = (1...(𝑘 + 1)))
76raleqdv 3339 . . 3 (𝑛 = (𝑘 + 1) → (∀𝑥 ∈ (1...𝑛)𝜑 ↔ ∀𝑥 ∈ (1...(𝑘 + 1))𝜑))
8 oveq2 7263 . . . 4 (𝑛 = 𝐴 → (1...𝑛) = (1...𝐴))
98raleqdv 3339 . . 3 (𝑛 = 𝐴 → (∀𝑥 ∈ (1...𝑛)𝜑 ↔ ∀𝑥 ∈ (1...𝐴)𝜑))
10 prmind.6 . . . . 5 𝜓
11 elfz1eq 13196 . . . . . 6 (𝑥 ∈ (1...1) → 𝑥 = 1)
12 prmind.1 . . . . . 6 (𝑥 = 1 → (𝜑𝜓))
1311, 12syl 17 . . . . 5 (𝑥 ∈ (1...1) → (𝜑𝜓))
1410, 13mpbiri 257 . . . 4 (𝑥 ∈ (1...1) → 𝜑)
1514rgen 3073 . . 3 𝑥 ∈ (1...1)𝜑
16 peano2nn 11915 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
1716ad2antrr 722 . . . . . . . . . . . 12 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ∈ ℕ)
1817nncnd 11919 . . . . . . . . . . 11 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ∈ ℂ)
19 elfzuz 13181 . . . . . . . . . . . . . 14 (𝑦 ∈ (2...((𝑘 + 1) − 1)) → 𝑦 ∈ (ℤ‘2))
2019ad2antrl 724 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ (ℤ‘2))
21 eluz2nn 12553 . . . . . . . . . . . . 13 (𝑦 ∈ (ℤ‘2) → 𝑦 ∈ ℕ)
2220, 21syl 17 . . . . . . . . . . . 12 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ ℕ)
2322nncnd 11919 . . . . . . . . . . 11 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ ℂ)
2422nnne0d 11953 . . . . . . . . . . 11 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ≠ 0)
2518, 23, 24divcan2d 11683 . . . . . . . . . 10 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑦 · ((𝑘 + 1) / 𝑦)) = (𝑘 + 1))
26 simprr 769 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∥ (𝑘 + 1))
2722nnzd 12354 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ ℤ)
2817nnzd 12354 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ∈ ℤ)
29 dvdsval2 15894 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ∧ (𝑘 + 1) ∈ ℤ) → (𝑦 ∥ (𝑘 + 1) ↔ ((𝑘 + 1) / 𝑦) ∈ ℤ))
3027, 24, 28, 29syl3anc 1369 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑦 ∥ (𝑘 + 1) ↔ ((𝑘 + 1) / 𝑦) ∈ ℤ))
3126, 30mpbid 231 . . . . . . . . . . . 12 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ∈ ℤ)
3223mulid2d 10924 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (1 · 𝑦) = 𝑦)
33 elfzle2 13189 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (2...((𝑘 + 1) − 1)) → 𝑦 ≤ ((𝑘 + 1) − 1))
3433ad2antrl 724 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ≤ ((𝑘 + 1) − 1))
35 nncn 11911 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
3635ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑘 ∈ ℂ)
37 ax-1cn 10860 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
38 pncan 11157 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
3936, 37, 38sylancl 585 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) − 1) = 𝑘)
4034, 39breqtrd 5096 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦𝑘)
41 nnz 12272 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
4241ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑘 ∈ ℤ)
43 zleltp1 12301 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑦𝑘𝑦 < (𝑘 + 1)))
4427, 42, 43syl2anc 583 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑦𝑘𝑦 < (𝑘 + 1)))
4540, 44mpbid 231 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 < (𝑘 + 1))
4632, 45eqbrtrd 5092 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (1 · 𝑦) < (𝑘 + 1))
47 1red 10907 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 1 ∈ ℝ)
4817nnred 11918 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ∈ ℝ)
4922nnred 11918 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ ℝ)
5022nngt0d 11952 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 0 < 𝑦)
51 ltmuldiv 11778 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → ((1 · 𝑦) < (𝑘 + 1) ↔ 1 < ((𝑘 + 1) / 𝑦)))
5247, 48, 49, 50, 51syl112anc 1372 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((1 · 𝑦) < (𝑘 + 1) ↔ 1 < ((𝑘 + 1) / 𝑦)))
5346, 52mpbid 231 . . . . . . . . . . . 12 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 1 < ((𝑘 + 1) / 𝑦))
54 eluz2b1 12588 . . . . . . . . . . . 12 (((𝑘 + 1) / 𝑦) ∈ (ℤ‘2) ↔ (((𝑘 + 1) / 𝑦) ∈ ℤ ∧ 1 < ((𝑘 + 1) / 𝑦)))
5531, 53, 54sylanbrc 582 . . . . . . . . . . 11 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ∈ (ℤ‘2))
56 prmind.2 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝜑𝜒))
57 simplr 765 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ∀𝑥 ∈ (1...𝑘)𝜑)
58 fznn 13253 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℤ → (𝑦 ∈ (1...𝑘) ↔ (𝑦 ∈ ℕ ∧ 𝑦𝑘)))
5942, 58syl 17 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑦 ∈ (1...𝑘) ↔ (𝑦 ∈ ℕ ∧ 𝑦𝑘)))
6022, 40, 59mpbir2and 709 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ (1...𝑘))
6156, 57, 60rspcdva 3554 . . . . . . . . . . . 12 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝜒)
62 vex 3426 . . . . . . . . . . . . . . 15 𝑧 ∈ V
63 prmind.3 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (𝜑𝜃))
6462, 63sbcie 3754 . . . . . . . . . . . . . 14 ([𝑧 / 𝑥]𝜑𝜃)
65 dfsbcq 3713 . . . . . . . . . . . . . 14 (𝑧 = ((𝑘 + 1) / 𝑦) → ([𝑧 / 𝑥]𝜑[((𝑘 + 1) / 𝑦) / 𝑥]𝜑))
6664, 65bitr3id 284 . . . . . . . . . . . . 13 (𝑧 = ((𝑘 + 1) / 𝑦) → (𝜃[((𝑘 + 1) / 𝑦) / 𝑥]𝜑))
6763cbvralvw 3372 . . . . . . . . . . . . . 14 (∀𝑥 ∈ (1...𝑘)𝜑 ↔ ∀𝑧 ∈ (1...𝑘)𝜃)
6857, 67sylib 217 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ∀𝑧 ∈ (1...𝑘)𝜃)
6917nnrpd 12699 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ∈ ℝ+)
7022nnrpd 12699 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ ℝ+)
7169, 70rpdivcld 12718 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ∈ ℝ+)
7271rpgt0d 12704 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 0 < ((𝑘 + 1) / 𝑦))
73 elnnz 12259 . . . . . . . . . . . . . . 15 (((𝑘 + 1) / 𝑦) ∈ ℕ ↔ (((𝑘 + 1) / 𝑦) ∈ ℤ ∧ 0 < ((𝑘 + 1) / 𝑦)))
7431, 72, 73sylanbrc 582 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ∈ ℕ)
7517nnne0d 11953 . . . . . . . . . . . . . . . . . 18 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ≠ 0)
7618, 75dividd 11679 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / (𝑘 + 1)) = 1)
77 eluz2gt1 12589 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (ℤ‘2) → 1 < 𝑦)
7820, 77syl 17 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 1 < 𝑦)
7976, 78eqbrtrd 5092 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / (𝑘 + 1)) < 𝑦)
8017nngt0d 11952 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 0 < (𝑘 + 1))
81 ltdiv23 11796 . . . . . . . . . . . . . . . . 17 (((𝑘 + 1) ∈ ℝ ∧ ((𝑘 + 1) ∈ ℝ ∧ 0 < (𝑘 + 1)) ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → (((𝑘 + 1) / (𝑘 + 1)) < 𝑦 ↔ ((𝑘 + 1) / 𝑦) < (𝑘 + 1)))
8248, 48, 80, 49, 50, 81syl122anc 1377 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (((𝑘 + 1) / (𝑘 + 1)) < 𝑦 ↔ ((𝑘 + 1) / 𝑦) < (𝑘 + 1)))
8379, 82mpbid 231 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) < (𝑘 + 1))
84 zleltp1 12301 . . . . . . . . . . . . . . . 16 ((((𝑘 + 1) / 𝑦) ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((𝑘 + 1) / 𝑦) ≤ 𝑘 ↔ ((𝑘 + 1) / 𝑦) < (𝑘 + 1)))
8531, 42, 84syl2anc 583 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (((𝑘 + 1) / 𝑦) ≤ 𝑘 ↔ ((𝑘 + 1) / 𝑦) < (𝑘 + 1)))
8683, 85mpbird 256 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ≤ 𝑘)
87 fznn 13253 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℤ → (((𝑘 + 1) / 𝑦) ∈ (1...𝑘) ↔ (((𝑘 + 1) / 𝑦) ∈ ℕ ∧ ((𝑘 + 1) / 𝑦) ≤ 𝑘)))
8842, 87syl 17 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (((𝑘 + 1) / 𝑦) ∈ (1...𝑘) ↔ (((𝑘 + 1) / 𝑦) ∈ ℕ ∧ ((𝑘 + 1) / 𝑦) ≤ 𝑘)))
8974, 86, 88mpbir2and 709 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ∈ (1...𝑘))
9066, 68, 89rspcdva 3554 . . . . . . . . . . . 12 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → [((𝑘 + 1) / 𝑦) / 𝑥]𝜑)
9161, 90jca 511 . . . . . . . . . . 11 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝜒[((𝑘 + 1) / 𝑦) / 𝑥]𝜑))
9266anbi2d 628 . . . . . . . . . . . . . 14 (𝑧 = ((𝑘 + 1) / 𝑦) → ((𝜒𝜃) ↔ (𝜒[((𝑘 + 1) / 𝑦) / 𝑥]𝜑)))
93 ovex 7288 . . . . . . . . . . . . . . . 16 (𝑦 · 𝑧) ∈ V
94 prmind.4 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑦 · 𝑧) → (𝜑𝜏))
9593, 94sbcie 3754 . . . . . . . . . . . . . . 15 ([(𝑦 · 𝑧) / 𝑥]𝜑𝜏)
96 oveq2 7263 . . . . . . . . . . . . . . . 16 (𝑧 = ((𝑘 + 1) / 𝑦) → (𝑦 · 𝑧) = (𝑦 · ((𝑘 + 1) / 𝑦)))
9796sbceq1d 3716 . . . . . . . . . . . . . . 15 (𝑧 = ((𝑘 + 1) / 𝑦) → ([(𝑦 · 𝑧) / 𝑥]𝜑[(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑))
9895, 97bitr3id 284 . . . . . . . . . . . . . 14 (𝑧 = ((𝑘 + 1) / 𝑦) → (𝜏[(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑))
9992, 98imbi12d 344 . . . . . . . . . . . . 13 (𝑧 = ((𝑘 + 1) / 𝑦) → (((𝜒𝜃) → 𝜏) ↔ ((𝜒[((𝑘 + 1) / 𝑦) / 𝑥]𝜑) → [(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑)))
10099imbi2d 340 . . . . . . . . . . . 12 (𝑧 = ((𝑘 + 1) / 𝑦) → ((𝑦 ∈ (ℤ‘2) → ((𝜒𝜃) → 𝜏)) ↔ (𝑦 ∈ (ℤ‘2) → ((𝜒[((𝑘 + 1) / 𝑦) / 𝑥]𝜑) → [(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑))))
101 prmind2.8 . . . . . . . . . . . . 13 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝜒𝜃) → 𝜏))
102101expcom 413 . . . . . . . . . . . 12 (𝑧 ∈ (ℤ‘2) → (𝑦 ∈ (ℤ‘2) → ((𝜒𝜃) → 𝜏)))
103100, 102vtoclga 3503 . . . . . . . . . . 11 (((𝑘 + 1) / 𝑦) ∈ (ℤ‘2) → (𝑦 ∈ (ℤ‘2) → ((𝜒[((𝑘 + 1) / 𝑦) / 𝑥]𝜑) → [(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑)))
10455, 20, 91, 103syl3c 66 . . . . . . . . . 10 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → [(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑)
10525, 104sbceq1dd 3717 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → [(𝑘 + 1) / 𝑥]𝜑)
106105rexlimdvaa 3213 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (∃𝑦 ∈ (2...((𝑘 + 1) − 1))𝑦 ∥ (𝑘 + 1) → [(𝑘 + 1) / 𝑥]𝜑))
107 ralnex 3163 . . . . . . . . 9 (∀𝑦 ∈ (2...((𝑘 + 1) − 1)) ¬ 𝑦 ∥ (𝑘 + 1) ↔ ¬ ∃𝑦 ∈ (2...((𝑘 + 1) − 1))𝑦 ∥ (𝑘 + 1))
108 simpl 482 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → 𝑘 ∈ ℕ)
109 elnnuz 12551 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
110108, 109sylib 217 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → 𝑘 ∈ (ℤ‘1))
111 eluzp1p1 12539 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ‘1) → (𝑘 + 1) ∈ (ℤ‘(1 + 1)))
112110, 111syl 17 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (𝑘 + 1) ∈ (ℤ‘(1 + 1)))
113 df-2 11966 . . . . . . . . . . . . 13 2 = (1 + 1)
114113fveq2i 6759 . . . . . . . . . . . 12 (ℤ‘2) = (ℤ‘(1 + 1))
115112, 114eleqtrrdi 2850 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (𝑘 + 1) ∈ (ℤ‘2))
116 isprm3 16316 . . . . . . . . . . . 12 ((𝑘 + 1) ∈ ℙ ↔ ((𝑘 + 1) ∈ (ℤ‘2) ∧ ∀𝑦 ∈ (2...((𝑘 + 1) − 1)) ¬ 𝑦 ∥ (𝑘 + 1)))
117116baibr 536 . . . . . . . . . . 11 ((𝑘 + 1) ∈ (ℤ‘2) → (∀𝑦 ∈ (2...((𝑘 + 1) − 1)) ¬ 𝑦 ∥ (𝑘 + 1) ↔ (𝑘 + 1) ∈ ℙ))
118115, 117syl 17 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (∀𝑦 ∈ (2...((𝑘 + 1) − 1)) ¬ 𝑦 ∥ (𝑘 + 1) ↔ (𝑘 + 1) ∈ ℙ))
119 simpr 484 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → ∀𝑥 ∈ (1...𝑘)𝜑)
12056cbvralvw 3372 . . . . . . . . . . . . 13 (∀𝑥 ∈ (1...𝑘)𝜑 ↔ ∀𝑦 ∈ (1...𝑘)𝜒)
121119, 120sylib 217 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → ∀𝑦 ∈ (1...𝑘)𝜒)
122108nncnd 11919 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → 𝑘 ∈ ℂ)
123122, 37, 38sylancl 585 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → ((𝑘 + 1) − 1) = 𝑘)
124123oveq2d 7271 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (1...((𝑘 + 1) − 1)) = (1...𝑘))
125124raleqdv 3339 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒 ↔ ∀𝑦 ∈ (1...𝑘)𝜒))
126121, 125mpbird 256 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → ∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒)
127 nfcv 2906 . . . . . . . . . . . 12 𝑥(𝑘 + 1)
128 nfv 1918 . . . . . . . . . . . . 13 𝑥𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒
129 nfsbc1v 3731 . . . . . . . . . . . . 13 𝑥[(𝑘 + 1) / 𝑥]𝜑
130128, 129nfim 1900 . . . . . . . . . . . 12 𝑥(∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒[(𝑘 + 1) / 𝑥]𝜑)
131 oveq1 7262 . . . . . . . . . . . . . . 15 (𝑥 = (𝑘 + 1) → (𝑥 − 1) = ((𝑘 + 1) − 1))
132131oveq2d 7271 . . . . . . . . . . . . . 14 (𝑥 = (𝑘 + 1) → (1...(𝑥 − 1)) = (1...((𝑘 + 1) − 1)))
133132raleqdv 3339 . . . . . . . . . . . . 13 (𝑥 = (𝑘 + 1) → (∀𝑦 ∈ (1...(𝑥 − 1))𝜒 ↔ ∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒))
134 sbceq1a 3722 . . . . . . . . . . . . 13 (𝑥 = (𝑘 + 1) → (𝜑[(𝑘 + 1) / 𝑥]𝜑))
135133, 134imbi12d 344 . . . . . . . . . . . 12 (𝑥 = (𝑘 + 1) → ((∀𝑦 ∈ (1...(𝑥 − 1))𝜒𝜑) ↔ (∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒[(𝑘 + 1) / 𝑥]𝜑)))
136 prmind2.7 . . . . . . . . . . . . 13 ((𝑥 ∈ ℙ ∧ ∀𝑦 ∈ (1...(𝑥 − 1))𝜒) → 𝜑)
137136ex 412 . . . . . . . . . . . 12 (𝑥 ∈ ℙ → (∀𝑦 ∈ (1...(𝑥 − 1))𝜒𝜑))
138127, 130, 135, 137vtoclgaf 3502 . . . . . . . . . . 11 ((𝑘 + 1) ∈ ℙ → (∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒[(𝑘 + 1) / 𝑥]𝜑))
139126, 138syl5com 31 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → ((𝑘 + 1) ∈ ℙ → [(𝑘 + 1) / 𝑥]𝜑))
140118, 139sylbid 239 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (∀𝑦 ∈ (2...((𝑘 + 1) − 1)) ¬ 𝑦 ∥ (𝑘 + 1) → [(𝑘 + 1) / 𝑥]𝜑))
141107, 140syl5bir 242 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (¬ ∃𝑦 ∈ (2...((𝑘 + 1) − 1))𝑦 ∥ (𝑘 + 1) → [(𝑘 + 1) / 𝑥]𝜑))
142106, 141pm2.61d 179 . . . . . . 7 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → [(𝑘 + 1) / 𝑥]𝜑)
143142ex 412 . . . . . 6 (𝑘 ∈ ℕ → (∀𝑥 ∈ (1...𝑘)𝜑[(𝑘 + 1) / 𝑥]𝜑))
144 ralsnsg 4601 . . . . . . 7 ((𝑘 + 1) ∈ ℕ → (∀𝑥 ∈ {(𝑘 + 1)}𝜑[(𝑘 + 1) / 𝑥]𝜑))
14516, 144syl 17 . . . . . 6 (𝑘 ∈ ℕ → (∀𝑥 ∈ {(𝑘 + 1)}𝜑[(𝑘 + 1) / 𝑥]𝜑))
146143, 145sylibrd 258 . . . . 5 (𝑘 ∈ ℕ → (∀𝑥 ∈ (1...𝑘)𝜑 → ∀𝑥 ∈ {(𝑘 + 1)}𝜑))
147146ancld 550 . . . 4 (𝑘 ∈ ℕ → (∀𝑥 ∈ (1...𝑘)𝜑 → (∀𝑥 ∈ (1...𝑘)𝜑 ∧ ∀𝑥 ∈ {(𝑘 + 1)}𝜑)))
148 fzsuc 13232 . . . . . . 7 (𝑘 ∈ (ℤ‘1) → (1...(𝑘 + 1)) = ((1...𝑘) ∪ {(𝑘 + 1)}))
149109, 148sylbi 216 . . . . . 6 (𝑘 ∈ ℕ → (1...(𝑘 + 1)) = ((1...𝑘) ∪ {(𝑘 + 1)}))
150149raleqdv 3339 . . . . 5 (𝑘 ∈ ℕ → (∀𝑥 ∈ (1...(𝑘 + 1))𝜑 ↔ ∀𝑥 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})𝜑))
151 ralunb 4121 . . . . 5 (∀𝑥 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})𝜑 ↔ (∀𝑥 ∈ (1...𝑘)𝜑 ∧ ∀𝑥 ∈ {(𝑘 + 1)}𝜑))
152150, 151bitrdi 286 . . . 4 (𝑘 ∈ ℕ → (∀𝑥 ∈ (1...(𝑘 + 1))𝜑 ↔ (∀𝑥 ∈ (1...𝑘)𝜑 ∧ ∀𝑥 ∈ {(𝑘 + 1)}𝜑)))
153147, 152sylibrd 258 . . 3 (𝑘 ∈ ℕ → (∀𝑥 ∈ (1...𝑘)𝜑 → ∀𝑥 ∈ (1...(𝑘 + 1))𝜑))
1543, 5, 7, 9, 15, 153nnind 11921 . 2 (𝐴 ∈ ℕ → ∀𝑥 ∈ (1...𝐴)𝜑)
155 elfz1end 13215 . . 3 (𝐴 ∈ ℕ ↔ 𝐴 ∈ (1...𝐴))
156155biimpi 215 . 2 (𝐴 ∈ ℕ → 𝐴 ∈ (1...𝐴))
1571, 154, 156rspcdva 3554 1 (𝐴 ∈ ℕ → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  [wsbc 3711  cun 3881  {csn 4558   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  cz 12249  cuz 12511  ...cfz 13168  cdvds 15891  cprime 16304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-prm 16305
This theorem is referenced by:  prmind  16319  4sqlem19  16592
  Copyright terms: Public domain W3C validator