Step | Hyp | Ref
| Expression |
1 | | prmind.5 |
. 2
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜂)) |
2 | | oveq2 7263 |
. . . 4
⊢ (𝑛 = 1 → (1...𝑛) = (1...1)) |
3 | 2 | raleqdv 3339 |
. . 3
⊢ (𝑛 = 1 → (∀𝑥 ∈ (1...𝑛)𝜑 ↔ ∀𝑥 ∈ (1...1)𝜑)) |
4 | | oveq2 7263 |
. . . 4
⊢ (𝑛 = 𝑘 → (1...𝑛) = (1...𝑘)) |
5 | 4 | raleqdv 3339 |
. . 3
⊢ (𝑛 = 𝑘 → (∀𝑥 ∈ (1...𝑛)𝜑 ↔ ∀𝑥 ∈ (1...𝑘)𝜑)) |
6 | | oveq2 7263 |
. . . 4
⊢ (𝑛 = (𝑘 + 1) → (1...𝑛) = (1...(𝑘 + 1))) |
7 | 6 | raleqdv 3339 |
. . 3
⊢ (𝑛 = (𝑘 + 1) → (∀𝑥 ∈ (1...𝑛)𝜑 ↔ ∀𝑥 ∈ (1...(𝑘 + 1))𝜑)) |
8 | | oveq2 7263 |
. . . 4
⊢ (𝑛 = 𝐴 → (1...𝑛) = (1...𝐴)) |
9 | 8 | raleqdv 3339 |
. . 3
⊢ (𝑛 = 𝐴 → (∀𝑥 ∈ (1...𝑛)𝜑 ↔ ∀𝑥 ∈ (1...𝐴)𝜑)) |
10 | | prmind.6 |
. . . . 5
⊢ 𝜓 |
11 | | elfz1eq 13196 |
. . . . . 6
⊢ (𝑥 ∈ (1...1) → 𝑥 = 1) |
12 | | prmind.1 |
. . . . . 6
⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) |
13 | 11, 12 | syl 17 |
. . . . 5
⊢ (𝑥 ∈ (1...1) → (𝜑 ↔ 𝜓)) |
14 | 10, 13 | mpbiri 257 |
. . . 4
⊢ (𝑥 ∈ (1...1) → 𝜑) |
15 | 14 | rgen 3073 |
. . 3
⊢
∀𝑥 ∈
(1...1)𝜑 |
16 | | peano2nn 11915 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈
ℕ) |
17 | 16 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ∈ ℕ) |
18 | 17 | nncnd 11919 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ∈ ℂ) |
19 | | elfzuz 13181 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (2...((𝑘 + 1) − 1)) → 𝑦 ∈
(ℤ≥‘2)) |
20 | 19 | ad2antrl 724 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈
(ℤ≥‘2)) |
21 | | eluz2nn 12553 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈
(ℤ≥‘2) → 𝑦 ∈ ℕ) |
22 | 20, 21 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ ℕ) |
23 | 22 | nncnd 11919 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ ℂ) |
24 | 22 | nnne0d 11953 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ≠ 0) |
25 | 18, 23, 24 | divcan2d 11683 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑦 · ((𝑘 + 1) / 𝑦)) = (𝑘 + 1)) |
26 | | simprr 769 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∥ (𝑘 + 1)) |
27 | 22 | nnzd 12354 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ ℤ) |
28 | 17 | nnzd 12354 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ∈ ℤ) |
29 | | dvdsval2 15894 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ∧ (𝑘 + 1) ∈ ℤ) →
(𝑦 ∥ (𝑘 + 1) ↔ ((𝑘 + 1) / 𝑦) ∈ ℤ)) |
30 | 27, 24, 28, 29 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑦 ∥ (𝑘 + 1) ↔ ((𝑘 + 1) / 𝑦) ∈ ℤ)) |
31 | 26, 30 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ∈ ℤ) |
32 | 23 | mulid2d 10924 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (1 · 𝑦) = 𝑦) |
33 | | elfzle2 13189 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (2...((𝑘 + 1) − 1)) → 𝑦 ≤ ((𝑘 + 1) − 1)) |
34 | 33 | ad2antrl 724 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ≤ ((𝑘 + 1) − 1)) |
35 | | nncn 11911 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℂ) |
36 | 35 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑘 ∈ ℂ) |
37 | | ax-1cn 10860 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℂ |
38 | | pncan 11157 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑘 + 1)
− 1) = 𝑘) |
39 | 36, 37, 38 | sylancl 585 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) − 1) = 𝑘) |
40 | 34, 39 | breqtrd 5096 |
. . . . . . . . . . . . . . 15
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ≤ 𝑘) |
41 | | nnz 12272 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℤ) |
42 | 41 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑘 ∈ ℤ) |
43 | | zleltp1 12301 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑦 ≤ 𝑘 ↔ 𝑦 < (𝑘 + 1))) |
44 | 27, 42, 43 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑦 ≤ 𝑘 ↔ 𝑦 < (𝑘 + 1))) |
45 | 40, 44 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 < (𝑘 + 1)) |
46 | 32, 45 | eqbrtrd 5092 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (1 · 𝑦) < (𝑘 + 1)) |
47 | | 1red 10907 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 1 ∈
ℝ) |
48 | 17 | nnred 11918 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ∈ ℝ) |
49 | 22 | nnred 11918 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ ℝ) |
50 | 22 | nngt0d 11952 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 0 < 𝑦) |
51 | | ltmuldiv 11778 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ ℝ ∧ (𝑘 +
1) ∈ ℝ ∧ (𝑦
∈ ℝ ∧ 0 < 𝑦)) → ((1 · 𝑦) < (𝑘 + 1) ↔ 1 < ((𝑘 + 1) / 𝑦))) |
52 | 47, 48, 49, 50, 51 | syl112anc 1372 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((1 · 𝑦) < (𝑘 + 1) ↔ 1 < ((𝑘 + 1) / 𝑦))) |
53 | 46, 52 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 1 < ((𝑘 + 1) / 𝑦)) |
54 | | eluz2b1 12588 |
. . . . . . . . . . . 12
⊢ (((𝑘 + 1) / 𝑦) ∈ (ℤ≥‘2)
↔ (((𝑘 + 1) / 𝑦) ∈ ℤ ∧ 1 <
((𝑘 + 1) / 𝑦))) |
55 | 31, 53, 54 | sylanbrc 582 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ∈
(ℤ≥‘2)) |
56 | | prmind.2 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
57 | | simplr 765 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ∀𝑥 ∈ (1...𝑘)𝜑) |
58 | | fznn 13253 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℤ → (𝑦 ∈ (1...𝑘) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑘))) |
59 | 42, 58 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑦 ∈ (1...𝑘) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑘))) |
60 | 22, 40, 59 | mpbir2and 709 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ (1...𝑘)) |
61 | 56, 57, 60 | rspcdva 3554 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝜒) |
62 | | vex 3426 |
. . . . . . . . . . . . . . 15
⊢ 𝑧 ∈ V |
63 | | prmind.3 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜃)) |
64 | 62, 63 | sbcie 3754 |
. . . . . . . . . . . . . 14
⊢
([𝑧 / 𝑥]𝜑 ↔ 𝜃) |
65 | | dfsbcq 3713 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = ((𝑘 + 1) / 𝑦) → ([𝑧 / 𝑥]𝜑 ↔ [((𝑘 + 1) / 𝑦) / 𝑥]𝜑)) |
66 | 64, 65 | bitr3id 284 |
. . . . . . . . . . . . 13
⊢ (𝑧 = ((𝑘 + 1) / 𝑦) → (𝜃 ↔ [((𝑘 + 1) / 𝑦) / 𝑥]𝜑)) |
67 | 63 | cbvralvw 3372 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
(1...𝑘)𝜑 ↔ ∀𝑧 ∈ (1...𝑘)𝜃) |
68 | 57, 67 | sylib 217 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ∀𝑧 ∈ (1...𝑘)𝜃) |
69 | 17 | nnrpd 12699 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ∈
ℝ+) |
70 | 22 | nnrpd 12699 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ ℝ+) |
71 | 69, 70 | rpdivcld 12718 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ∈
ℝ+) |
72 | 71 | rpgt0d 12704 |
. . . . . . . . . . . . . . 15
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 0 < ((𝑘 + 1) / 𝑦)) |
73 | | elnnz 12259 |
. . . . . . . . . . . . . . 15
⊢ (((𝑘 + 1) / 𝑦) ∈ ℕ ↔ (((𝑘 + 1) / 𝑦) ∈ ℤ ∧ 0 < ((𝑘 + 1) / 𝑦))) |
74 | 31, 72, 73 | sylanbrc 582 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ∈ ℕ) |
75 | 17 | nnne0d 11953 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ≠ 0) |
76 | 18, 75 | dividd 11679 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / (𝑘 + 1)) = 1) |
77 | | eluz2gt1 12589 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈
(ℤ≥‘2) → 1 < 𝑦) |
78 | 20, 77 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 1 < 𝑦) |
79 | 76, 78 | eqbrtrd 5092 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / (𝑘 + 1)) < 𝑦) |
80 | 17 | nngt0d 11952 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 0 < (𝑘 + 1)) |
81 | | ltdiv23 11796 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑘 + 1) ∈ ℝ ∧
((𝑘 + 1) ∈ ℝ
∧ 0 < (𝑘 + 1)) ∧
(𝑦 ∈ ℝ ∧ 0
< 𝑦)) → (((𝑘 + 1) / (𝑘 + 1)) < 𝑦 ↔ ((𝑘 + 1) / 𝑦) < (𝑘 + 1))) |
82 | 48, 48, 80, 49, 50, 81 | syl122anc 1377 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (((𝑘 + 1) / (𝑘 + 1)) < 𝑦 ↔ ((𝑘 + 1) / 𝑦) < (𝑘 + 1))) |
83 | 79, 82 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) < (𝑘 + 1)) |
84 | | zleltp1 12301 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑘 + 1) / 𝑦) ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((𝑘 + 1) / 𝑦) ≤ 𝑘 ↔ ((𝑘 + 1) / 𝑦) < (𝑘 + 1))) |
85 | 31, 42, 84 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (((𝑘 + 1) / 𝑦) ≤ 𝑘 ↔ ((𝑘 + 1) / 𝑦) < (𝑘 + 1))) |
86 | 83, 85 | mpbird 256 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ≤ 𝑘) |
87 | | fznn 13253 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℤ → (((𝑘 + 1) / 𝑦) ∈ (1...𝑘) ↔ (((𝑘 + 1) / 𝑦) ∈ ℕ ∧ ((𝑘 + 1) / 𝑦) ≤ 𝑘))) |
88 | 42, 87 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (((𝑘 + 1) / 𝑦) ∈ (1...𝑘) ↔ (((𝑘 + 1) / 𝑦) ∈ ℕ ∧ ((𝑘 + 1) / 𝑦) ≤ 𝑘))) |
89 | 74, 86, 88 | mpbir2and 709 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ∈ (1...𝑘)) |
90 | 66, 68, 89 | rspcdva 3554 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → [((𝑘 + 1) / 𝑦) / 𝑥]𝜑) |
91 | 61, 90 | jca 511 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝜒 ∧ [((𝑘 + 1) / 𝑦) / 𝑥]𝜑)) |
92 | 66 | anbi2d 628 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = ((𝑘 + 1) / 𝑦) → ((𝜒 ∧ 𝜃) ↔ (𝜒 ∧ [((𝑘 + 1) / 𝑦) / 𝑥]𝜑))) |
93 | | ovex 7288 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 · 𝑧) ∈ V |
94 | | prmind.4 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑦 · 𝑧) → (𝜑 ↔ 𝜏)) |
95 | 93, 94 | sbcie 3754 |
. . . . . . . . . . . . . . 15
⊢
([(𝑦 ·
𝑧) / 𝑥]𝜑 ↔ 𝜏) |
96 | | oveq2 7263 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = ((𝑘 + 1) / 𝑦) → (𝑦 · 𝑧) = (𝑦 · ((𝑘 + 1) / 𝑦))) |
97 | 96 | sbceq1d 3716 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = ((𝑘 + 1) / 𝑦) → ([(𝑦 · 𝑧) / 𝑥]𝜑 ↔ [(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑)) |
98 | 95, 97 | bitr3id 284 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = ((𝑘 + 1) / 𝑦) → (𝜏 ↔ [(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑)) |
99 | 92, 98 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑧 = ((𝑘 + 1) / 𝑦) → (((𝜒 ∧ 𝜃) → 𝜏) ↔ ((𝜒 ∧ [((𝑘 + 1) / 𝑦) / 𝑥]𝜑) → [(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑))) |
100 | 99 | imbi2d 340 |
. . . . . . . . . . . 12
⊢ (𝑧 = ((𝑘 + 1) / 𝑦) → ((𝑦 ∈ (ℤ≥‘2)
→ ((𝜒 ∧ 𝜃) → 𝜏)) ↔ (𝑦 ∈ (ℤ≥‘2)
→ ((𝜒 ∧
[((𝑘 + 1) / 𝑦) / 𝑥]𝜑) → [(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑)))) |
101 | | prmind2.8 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈
(ℤ≥‘2) ∧ 𝑧 ∈ (ℤ≥‘2))
→ ((𝜒 ∧ 𝜃) → 𝜏)) |
102 | 101 | expcom 413 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈
(ℤ≥‘2) → (𝑦 ∈ (ℤ≥‘2)
→ ((𝜒 ∧ 𝜃) → 𝜏))) |
103 | 100, 102 | vtoclga 3503 |
. . . . . . . . . . 11
⊢ (((𝑘 + 1) / 𝑦) ∈ (ℤ≥‘2)
→ (𝑦 ∈
(ℤ≥‘2) → ((𝜒 ∧ [((𝑘 + 1) / 𝑦) / 𝑥]𝜑) → [(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑))) |
104 | 55, 20, 91, 103 | syl3c 66 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → [(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑) |
105 | 25, 104 | sbceq1dd 3717 |
. . . . . . . . 9
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → [(𝑘 + 1) / 𝑥]𝜑) |
106 | 105 | rexlimdvaa 3213 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → (∃𝑦 ∈ (2...((𝑘 + 1) − 1))𝑦 ∥ (𝑘 + 1) → [(𝑘 + 1) / 𝑥]𝜑)) |
107 | | ralnex 3163 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
(2...((𝑘 + 1) − 1))
¬ 𝑦 ∥ (𝑘 + 1) ↔ ¬ ∃𝑦 ∈ (2...((𝑘 + 1) − 1))𝑦 ∥ (𝑘 + 1)) |
108 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → 𝑘 ∈ ℕ) |
109 | | elnnuz 12551 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ ↔ 𝑘 ∈
(ℤ≥‘1)) |
110 | 108, 109 | sylib 217 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → 𝑘 ∈
(ℤ≥‘1)) |
111 | | eluzp1p1 12539 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈
(ℤ≥‘1) → (𝑘 + 1) ∈ (ℤ≥‘(1
+ 1))) |
112 | 110, 111 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → (𝑘 + 1) ∈ (ℤ≥‘(1
+ 1))) |
113 | | df-2 11966 |
. . . . . . . . . . . . 13
⊢ 2 = (1 +
1) |
114 | 113 | fveq2i 6759 |
. . . . . . . . . . . 12
⊢
(ℤ≥‘2) = (ℤ≥‘(1 +
1)) |
115 | 112, 114 | eleqtrrdi 2850 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → (𝑘 + 1) ∈
(ℤ≥‘2)) |
116 | | isprm3 16316 |
. . . . . . . . . . . 12
⊢ ((𝑘 + 1) ∈ ℙ ↔
((𝑘 + 1) ∈
(ℤ≥‘2) ∧ ∀𝑦 ∈ (2...((𝑘 + 1) − 1)) ¬ 𝑦 ∥ (𝑘 + 1))) |
117 | 116 | baibr 536 |
. . . . . . . . . . 11
⊢ ((𝑘 + 1) ∈
(ℤ≥‘2) → (∀𝑦 ∈ (2...((𝑘 + 1) − 1)) ¬ 𝑦 ∥ (𝑘 + 1) ↔ (𝑘 + 1) ∈ ℙ)) |
118 | 115, 117 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → (∀𝑦 ∈ (2...((𝑘 + 1) − 1)) ¬ 𝑦 ∥ (𝑘 + 1) ↔ (𝑘 + 1) ∈ ℙ)) |
119 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → ∀𝑥 ∈ (1...𝑘)𝜑) |
120 | 56 | cbvralvw 3372 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
(1...𝑘)𝜑 ↔ ∀𝑦 ∈ (1...𝑘)𝜒) |
121 | 119, 120 | sylib 217 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → ∀𝑦 ∈ (1...𝑘)𝜒) |
122 | 108 | nncnd 11919 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → 𝑘 ∈ ℂ) |
123 | 122, 37, 38 | sylancl 585 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → ((𝑘 + 1) − 1) = 𝑘) |
124 | 123 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → (1...((𝑘 + 1) − 1)) = (1...𝑘)) |
125 | 124 | raleqdv 3339 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → (∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒 ↔ ∀𝑦 ∈ (1...𝑘)𝜒)) |
126 | 121, 125 | mpbird 256 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → ∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒) |
127 | | nfcv 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(𝑘 + 1) |
128 | | nfv 1918 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒 |
129 | | nfsbc1v 3731 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥[(𝑘 + 1) / 𝑥]𝜑 |
130 | 128, 129 | nfim 1900 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒 → [(𝑘 + 1) / 𝑥]𝜑) |
131 | | oveq1 7262 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑘 + 1) → (𝑥 − 1) = ((𝑘 + 1) − 1)) |
132 | 131 | oveq2d 7271 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑘 + 1) → (1...(𝑥 − 1)) = (1...((𝑘 + 1) − 1))) |
133 | 132 | raleqdv 3339 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑘 + 1) → (∀𝑦 ∈ (1...(𝑥 − 1))𝜒 ↔ ∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒)) |
134 | | sbceq1a 3722 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑘 + 1) → (𝜑 ↔ [(𝑘 + 1) / 𝑥]𝜑)) |
135 | 133, 134 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑘 + 1) → ((∀𝑦 ∈ (1...(𝑥 − 1))𝜒 → 𝜑) ↔ (∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒 → [(𝑘 + 1) / 𝑥]𝜑))) |
136 | | prmind2.7 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℙ ∧
∀𝑦 ∈
(1...(𝑥 − 1))𝜒) → 𝜑) |
137 | 136 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℙ →
(∀𝑦 ∈
(1...(𝑥 − 1))𝜒 → 𝜑)) |
138 | 127, 130,
135, 137 | vtoclgaf 3502 |
. . . . . . . . . . 11
⊢ ((𝑘 + 1) ∈ ℙ →
(∀𝑦 ∈
(1...((𝑘 + 1) −
1))𝜒 → [(𝑘 + 1) / 𝑥]𝜑)) |
139 | 126, 138 | syl5com 31 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → ((𝑘 + 1) ∈ ℙ → [(𝑘 + 1) / 𝑥]𝜑)) |
140 | 118, 139 | sylbid 239 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → (∀𝑦 ∈ (2...((𝑘 + 1) − 1)) ¬ 𝑦 ∥ (𝑘 + 1) → [(𝑘 + 1) / 𝑥]𝜑)) |
141 | 107, 140 | syl5bir 242 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → (¬ ∃𝑦 ∈ (2...((𝑘 + 1) − 1))𝑦 ∥ (𝑘 + 1) → [(𝑘 + 1) / 𝑥]𝜑)) |
142 | 106, 141 | pm2.61d 179 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → [(𝑘 + 1) / 𝑥]𝜑) |
143 | 142 | ex 412 |
. . . . . 6
⊢ (𝑘 ∈ ℕ →
(∀𝑥 ∈
(1...𝑘)𝜑 → [(𝑘 + 1) / 𝑥]𝜑)) |
144 | | ralsnsg 4601 |
. . . . . . 7
⊢ ((𝑘 + 1) ∈ ℕ →
(∀𝑥 ∈ {(𝑘 + 1)}𝜑 ↔ [(𝑘 + 1) / 𝑥]𝜑)) |
145 | 16, 144 | syl 17 |
. . . . . 6
⊢ (𝑘 ∈ ℕ →
(∀𝑥 ∈ {(𝑘 + 1)}𝜑 ↔ [(𝑘 + 1) / 𝑥]𝜑)) |
146 | 143, 145 | sylibrd 258 |
. . . . 5
⊢ (𝑘 ∈ ℕ →
(∀𝑥 ∈
(1...𝑘)𝜑 → ∀𝑥 ∈ {(𝑘 + 1)}𝜑)) |
147 | 146 | ancld 550 |
. . . 4
⊢ (𝑘 ∈ ℕ →
(∀𝑥 ∈
(1...𝑘)𝜑 → (∀𝑥 ∈ (1...𝑘)𝜑 ∧ ∀𝑥 ∈ {(𝑘 + 1)}𝜑))) |
148 | | fzsuc 13232 |
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘1) → (1...(𝑘 + 1)) = ((1...𝑘) ∪ {(𝑘 + 1)})) |
149 | 109, 148 | sylbi 216 |
. . . . . 6
⊢ (𝑘 ∈ ℕ →
(1...(𝑘 + 1)) = ((1...𝑘) ∪ {(𝑘 + 1)})) |
150 | 149 | raleqdv 3339 |
. . . . 5
⊢ (𝑘 ∈ ℕ →
(∀𝑥 ∈
(1...(𝑘 + 1))𝜑 ↔ ∀𝑥 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})𝜑)) |
151 | | ralunb 4121 |
. . . . 5
⊢
(∀𝑥 ∈
((1...𝑘) ∪ {(𝑘 + 1)})𝜑 ↔ (∀𝑥 ∈ (1...𝑘)𝜑 ∧ ∀𝑥 ∈ {(𝑘 + 1)}𝜑)) |
152 | 150, 151 | bitrdi 286 |
. . . 4
⊢ (𝑘 ∈ ℕ →
(∀𝑥 ∈
(1...(𝑘 + 1))𝜑 ↔ (∀𝑥 ∈ (1...𝑘)𝜑 ∧ ∀𝑥 ∈ {(𝑘 + 1)}𝜑))) |
153 | 147, 152 | sylibrd 258 |
. . 3
⊢ (𝑘 ∈ ℕ →
(∀𝑥 ∈
(1...𝑘)𝜑 → ∀𝑥 ∈ (1...(𝑘 + 1))𝜑)) |
154 | 3, 5, 7, 9, 15, 153 | nnind 11921 |
. 2
⊢ (𝐴 ∈ ℕ →
∀𝑥 ∈ (1...𝐴)𝜑) |
155 | | elfz1end 13215 |
. . 3
⊢ (𝐴 ∈ ℕ ↔ 𝐴 ∈ (1...𝐴)) |
156 | 155 | biimpi 215 |
. 2
⊢ (𝐴 ∈ ℕ → 𝐴 ∈ (1...𝐴)) |
157 | 1, 154, 156 | rspcdva 3554 |
1
⊢ (𝐴 ∈ ℕ → 𝜂) |