MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmind2 Structured version   Visualization version   GIF version

Theorem prmind2 16561
Description: A variation on prmind 16562 assuming complete induction for primes. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
prmind.1 (𝑥 = 1 → (𝜑𝜓))
prmind.2 (𝑥 = 𝑦 → (𝜑𝜒))
prmind.3 (𝑥 = 𝑧 → (𝜑𝜃))
prmind.4 (𝑥 = (𝑦 · 𝑧) → (𝜑𝜏))
prmind.5 (𝑥 = 𝐴 → (𝜑𝜂))
prmind.6 𝜓
prmind2.7 ((𝑥 ∈ ℙ ∧ ∀𝑦 ∈ (1...(𝑥 − 1))𝜒) → 𝜑)
prmind2.8 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝜒𝜃) → 𝜏))
Assertion
Ref Expression
prmind2 (𝐴 ∈ ℕ → 𝜂)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝑥,𝑧,𝜒   𝜂,𝑥   𝜏,𝑥   𝜃,𝑥   𝑦,𝑧,𝜑
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑦)   𝜃(𝑦,𝑧)   𝜏(𝑦,𝑧)   𝜂(𝑦,𝑧)   𝐴(𝑦,𝑧)

Proof of Theorem prmind2
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmind.5 . 2 (𝑥 = 𝐴 → (𝜑𝜂))
2 oveq2 7365 . . . 4 (𝑛 = 1 → (1...𝑛) = (1...1))
32raleqdv 3313 . . 3 (𝑛 = 1 → (∀𝑥 ∈ (1...𝑛)𝜑 ↔ ∀𝑥 ∈ (1...1)𝜑))
4 oveq2 7365 . . . 4 (𝑛 = 𝑘 → (1...𝑛) = (1...𝑘))
54raleqdv 3313 . . 3 (𝑛 = 𝑘 → (∀𝑥 ∈ (1...𝑛)𝜑 ↔ ∀𝑥 ∈ (1...𝑘)𝜑))
6 oveq2 7365 . . . 4 (𝑛 = (𝑘 + 1) → (1...𝑛) = (1...(𝑘 + 1)))
76raleqdv 3313 . . 3 (𝑛 = (𝑘 + 1) → (∀𝑥 ∈ (1...𝑛)𝜑 ↔ ∀𝑥 ∈ (1...(𝑘 + 1))𝜑))
8 oveq2 7365 . . . 4 (𝑛 = 𝐴 → (1...𝑛) = (1...𝐴))
98raleqdv 3313 . . 3 (𝑛 = 𝐴 → (∀𝑥 ∈ (1...𝑛)𝜑 ↔ ∀𝑥 ∈ (1...𝐴)𝜑))
10 prmind.6 . . . . 5 𝜓
11 elfz1eq 13452 . . . . . 6 (𝑥 ∈ (1...1) → 𝑥 = 1)
12 prmind.1 . . . . . 6 (𝑥 = 1 → (𝜑𝜓))
1311, 12syl 17 . . . . 5 (𝑥 ∈ (1...1) → (𝜑𝜓))
1410, 13mpbiri 257 . . . 4 (𝑥 ∈ (1...1) → 𝜑)
1514rgen 3066 . . 3 𝑥 ∈ (1...1)𝜑
16 peano2nn 12165 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
1716ad2antrr 724 . . . . . . . . . . . 12 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ∈ ℕ)
1817nncnd 12169 . . . . . . . . . . 11 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ∈ ℂ)
19 elfzuz 13437 . . . . . . . . . . . . . 14 (𝑦 ∈ (2...((𝑘 + 1) − 1)) → 𝑦 ∈ (ℤ‘2))
2019ad2antrl 726 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ (ℤ‘2))
21 eluz2nn 12809 . . . . . . . . . . . . 13 (𝑦 ∈ (ℤ‘2) → 𝑦 ∈ ℕ)
2220, 21syl 17 . . . . . . . . . . . 12 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ ℕ)
2322nncnd 12169 . . . . . . . . . . 11 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ ℂ)
2422nnne0d 12203 . . . . . . . . . . 11 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ≠ 0)
2518, 23, 24divcan2d 11933 . . . . . . . . . 10 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑦 · ((𝑘 + 1) / 𝑦)) = (𝑘 + 1))
26 simprr 771 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∥ (𝑘 + 1))
2722nnzd 12526 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ ℤ)
2817nnzd 12526 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ∈ ℤ)
29 dvdsval2 16139 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ∧ (𝑘 + 1) ∈ ℤ) → (𝑦 ∥ (𝑘 + 1) ↔ ((𝑘 + 1) / 𝑦) ∈ ℤ))
3027, 24, 28, 29syl3anc 1371 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑦 ∥ (𝑘 + 1) ↔ ((𝑘 + 1) / 𝑦) ∈ ℤ))
3126, 30mpbid 231 . . . . . . . . . . . 12 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ∈ ℤ)
3223mulid2d 11173 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (1 · 𝑦) = 𝑦)
33 elfzle2 13445 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (2...((𝑘 + 1) − 1)) → 𝑦 ≤ ((𝑘 + 1) − 1))
3433ad2antrl 726 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ≤ ((𝑘 + 1) − 1))
35 nncn 12161 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
3635ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑘 ∈ ℂ)
37 ax-1cn 11109 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
38 pncan 11407 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
3936, 37, 38sylancl 586 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) − 1) = 𝑘)
4034, 39breqtrd 5131 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦𝑘)
41 nnz 12520 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
4241ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑘 ∈ ℤ)
43 zleltp1 12554 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑦𝑘𝑦 < (𝑘 + 1)))
4427, 42, 43syl2anc 584 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑦𝑘𝑦 < (𝑘 + 1)))
4540, 44mpbid 231 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 < (𝑘 + 1))
4632, 45eqbrtrd 5127 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (1 · 𝑦) < (𝑘 + 1))
47 1red 11156 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 1 ∈ ℝ)
4817nnred 12168 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ∈ ℝ)
4922nnred 12168 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ ℝ)
5022nngt0d 12202 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 0 < 𝑦)
51 ltmuldiv 12028 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → ((1 · 𝑦) < (𝑘 + 1) ↔ 1 < ((𝑘 + 1) / 𝑦)))
5247, 48, 49, 50, 51syl112anc 1374 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((1 · 𝑦) < (𝑘 + 1) ↔ 1 < ((𝑘 + 1) / 𝑦)))
5346, 52mpbid 231 . . . . . . . . . . . 12 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 1 < ((𝑘 + 1) / 𝑦))
54 eluz2b1 12844 . . . . . . . . . . . 12 (((𝑘 + 1) / 𝑦) ∈ (ℤ‘2) ↔ (((𝑘 + 1) / 𝑦) ∈ ℤ ∧ 1 < ((𝑘 + 1) / 𝑦)))
5531, 53, 54sylanbrc 583 . . . . . . . . . . 11 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ∈ (ℤ‘2))
56 prmind.2 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝜑𝜒))
57 simplr 767 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ∀𝑥 ∈ (1...𝑘)𝜑)
58 fznn 13509 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℤ → (𝑦 ∈ (1...𝑘) ↔ (𝑦 ∈ ℕ ∧ 𝑦𝑘)))
5942, 58syl 17 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑦 ∈ (1...𝑘) ↔ (𝑦 ∈ ℕ ∧ 𝑦𝑘)))
6022, 40, 59mpbir2and 711 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ (1...𝑘))
6156, 57, 60rspcdva 3582 . . . . . . . . . . . 12 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝜒)
62 vex 3449 . . . . . . . . . . . . . . 15 𝑧 ∈ V
63 prmind.3 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (𝜑𝜃))
6462, 63sbcie 3782 . . . . . . . . . . . . . 14 ([𝑧 / 𝑥]𝜑𝜃)
65 dfsbcq 3741 . . . . . . . . . . . . . 14 (𝑧 = ((𝑘 + 1) / 𝑦) → ([𝑧 / 𝑥]𝜑[((𝑘 + 1) / 𝑦) / 𝑥]𝜑))
6664, 65bitr3id 284 . . . . . . . . . . . . 13 (𝑧 = ((𝑘 + 1) / 𝑦) → (𝜃[((𝑘 + 1) / 𝑦) / 𝑥]𝜑))
6763cbvralvw 3225 . . . . . . . . . . . . . 14 (∀𝑥 ∈ (1...𝑘)𝜑 ↔ ∀𝑧 ∈ (1...𝑘)𝜃)
6857, 67sylib 217 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ∀𝑧 ∈ (1...𝑘)𝜃)
6917nnrpd 12955 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ∈ ℝ+)
7022nnrpd 12955 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ ℝ+)
7169, 70rpdivcld 12974 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ∈ ℝ+)
7271rpgt0d 12960 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 0 < ((𝑘 + 1) / 𝑦))
73 elnnz 12509 . . . . . . . . . . . . . . 15 (((𝑘 + 1) / 𝑦) ∈ ℕ ↔ (((𝑘 + 1) / 𝑦) ∈ ℤ ∧ 0 < ((𝑘 + 1) / 𝑦)))
7431, 72, 73sylanbrc 583 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ∈ ℕ)
7517nnne0d 12203 . . . . . . . . . . . . . . . . . 18 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ≠ 0)
7618, 75dividd 11929 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / (𝑘 + 1)) = 1)
77 eluz2gt1 12845 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (ℤ‘2) → 1 < 𝑦)
7820, 77syl 17 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 1 < 𝑦)
7976, 78eqbrtrd 5127 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / (𝑘 + 1)) < 𝑦)
8017nngt0d 12202 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 0 < (𝑘 + 1))
81 ltdiv23 12046 . . . . . . . . . . . . . . . . 17 (((𝑘 + 1) ∈ ℝ ∧ ((𝑘 + 1) ∈ ℝ ∧ 0 < (𝑘 + 1)) ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → (((𝑘 + 1) / (𝑘 + 1)) < 𝑦 ↔ ((𝑘 + 1) / 𝑦) < (𝑘 + 1)))
8248, 48, 80, 49, 50, 81syl122anc 1379 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (((𝑘 + 1) / (𝑘 + 1)) < 𝑦 ↔ ((𝑘 + 1) / 𝑦) < (𝑘 + 1)))
8379, 82mpbid 231 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) < (𝑘 + 1))
84 zleltp1 12554 . . . . . . . . . . . . . . . 16 ((((𝑘 + 1) / 𝑦) ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((𝑘 + 1) / 𝑦) ≤ 𝑘 ↔ ((𝑘 + 1) / 𝑦) < (𝑘 + 1)))
8531, 42, 84syl2anc 584 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (((𝑘 + 1) / 𝑦) ≤ 𝑘 ↔ ((𝑘 + 1) / 𝑦) < (𝑘 + 1)))
8683, 85mpbird 256 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ≤ 𝑘)
87 fznn 13509 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℤ → (((𝑘 + 1) / 𝑦) ∈ (1...𝑘) ↔ (((𝑘 + 1) / 𝑦) ∈ ℕ ∧ ((𝑘 + 1) / 𝑦) ≤ 𝑘)))
8842, 87syl 17 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (((𝑘 + 1) / 𝑦) ∈ (1...𝑘) ↔ (((𝑘 + 1) / 𝑦) ∈ ℕ ∧ ((𝑘 + 1) / 𝑦) ≤ 𝑘)))
8974, 86, 88mpbir2and 711 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ∈ (1...𝑘))
9066, 68, 89rspcdva 3582 . . . . . . . . . . . 12 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → [((𝑘 + 1) / 𝑦) / 𝑥]𝜑)
9161, 90jca 512 . . . . . . . . . . 11 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝜒[((𝑘 + 1) / 𝑦) / 𝑥]𝜑))
9266anbi2d 629 . . . . . . . . . . . . . 14 (𝑧 = ((𝑘 + 1) / 𝑦) → ((𝜒𝜃) ↔ (𝜒[((𝑘 + 1) / 𝑦) / 𝑥]𝜑)))
93 ovex 7390 . . . . . . . . . . . . . . . 16 (𝑦 · 𝑧) ∈ V
94 prmind.4 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑦 · 𝑧) → (𝜑𝜏))
9593, 94sbcie 3782 . . . . . . . . . . . . . . 15 ([(𝑦 · 𝑧) / 𝑥]𝜑𝜏)
96 oveq2 7365 . . . . . . . . . . . . . . . 16 (𝑧 = ((𝑘 + 1) / 𝑦) → (𝑦 · 𝑧) = (𝑦 · ((𝑘 + 1) / 𝑦)))
9796sbceq1d 3744 . . . . . . . . . . . . . . 15 (𝑧 = ((𝑘 + 1) / 𝑦) → ([(𝑦 · 𝑧) / 𝑥]𝜑[(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑))
9895, 97bitr3id 284 . . . . . . . . . . . . . 14 (𝑧 = ((𝑘 + 1) / 𝑦) → (𝜏[(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑))
9992, 98imbi12d 344 . . . . . . . . . . . . 13 (𝑧 = ((𝑘 + 1) / 𝑦) → (((𝜒𝜃) → 𝜏) ↔ ((𝜒[((𝑘 + 1) / 𝑦) / 𝑥]𝜑) → [(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑)))
10099imbi2d 340 . . . . . . . . . . . 12 (𝑧 = ((𝑘 + 1) / 𝑦) → ((𝑦 ∈ (ℤ‘2) → ((𝜒𝜃) → 𝜏)) ↔ (𝑦 ∈ (ℤ‘2) → ((𝜒[((𝑘 + 1) / 𝑦) / 𝑥]𝜑) → [(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑))))
101 prmind2.8 . . . . . . . . . . . . 13 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝜒𝜃) → 𝜏))
102101expcom 414 . . . . . . . . . . . 12 (𝑧 ∈ (ℤ‘2) → (𝑦 ∈ (ℤ‘2) → ((𝜒𝜃) → 𝜏)))
103100, 102vtoclga 3534 . . . . . . . . . . 11 (((𝑘 + 1) / 𝑦) ∈ (ℤ‘2) → (𝑦 ∈ (ℤ‘2) → ((𝜒[((𝑘 + 1) / 𝑦) / 𝑥]𝜑) → [(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑)))
10455, 20, 91, 103syl3c 66 . . . . . . . . . 10 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → [(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑)
10525, 104sbceq1dd 3745 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → [(𝑘 + 1) / 𝑥]𝜑)
106105rexlimdvaa 3153 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (∃𝑦 ∈ (2...((𝑘 + 1) − 1))𝑦 ∥ (𝑘 + 1) → [(𝑘 + 1) / 𝑥]𝜑))
107 ralnex 3075 . . . . . . . . 9 (∀𝑦 ∈ (2...((𝑘 + 1) − 1)) ¬ 𝑦 ∥ (𝑘 + 1) ↔ ¬ ∃𝑦 ∈ (2...((𝑘 + 1) − 1))𝑦 ∥ (𝑘 + 1))
108 simpl 483 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → 𝑘 ∈ ℕ)
109 elnnuz 12807 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
110108, 109sylib 217 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → 𝑘 ∈ (ℤ‘1))
111 eluzp1p1 12791 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ‘1) → (𝑘 + 1) ∈ (ℤ‘(1 + 1)))
112110, 111syl 17 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (𝑘 + 1) ∈ (ℤ‘(1 + 1)))
113 df-2 12216 . . . . . . . . . . . . 13 2 = (1 + 1)
114113fveq2i 6845 . . . . . . . . . . . 12 (ℤ‘2) = (ℤ‘(1 + 1))
115112, 114eleqtrrdi 2849 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (𝑘 + 1) ∈ (ℤ‘2))
116 isprm3 16559 . . . . . . . . . . . 12 ((𝑘 + 1) ∈ ℙ ↔ ((𝑘 + 1) ∈ (ℤ‘2) ∧ ∀𝑦 ∈ (2...((𝑘 + 1) − 1)) ¬ 𝑦 ∥ (𝑘 + 1)))
117116baibr 537 . . . . . . . . . . 11 ((𝑘 + 1) ∈ (ℤ‘2) → (∀𝑦 ∈ (2...((𝑘 + 1) − 1)) ¬ 𝑦 ∥ (𝑘 + 1) ↔ (𝑘 + 1) ∈ ℙ))
118115, 117syl 17 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (∀𝑦 ∈ (2...((𝑘 + 1) − 1)) ¬ 𝑦 ∥ (𝑘 + 1) ↔ (𝑘 + 1) ∈ ℙ))
119 simpr 485 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → ∀𝑥 ∈ (1...𝑘)𝜑)
12056cbvralvw 3225 . . . . . . . . . . . . 13 (∀𝑥 ∈ (1...𝑘)𝜑 ↔ ∀𝑦 ∈ (1...𝑘)𝜒)
121119, 120sylib 217 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → ∀𝑦 ∈ (1...𝑘)𝜒)
122108nncnd 12169 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → 𝑘 ∈ ℂ)
123122, 37, 38sylancl 586 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → ((𝑘 + 1) − 1) = 𝑘)
124123oveq2d 7373 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (1...((𝑘 + 1) − 1)) = (1...𝑘))
125124raleqdv 3313 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒 ↔ ∀𝑦 ∈ (1...𝑘)𝜒))
126121, 125mpbird 256 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → ∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒)
127 nfcv 2907 . . . . . . . . . . . 12 𝑥(𝑘 + 1)
128 nfv 1917 . . . . . . . . . . . . 13 𝑥𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒
129 nfsbc1v 3759 . . . . . . . . . . . . 13 𝑥[(𝑘 + 1) / 𝑥]𝜑
130128, 129nfim 1899 . . . . . . . . . . . 12 𝑥(∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒[(𝑘 + 1) / 𝑥]𝜑)
131 oveq1 7364 . . . . . . . . . . . . . . 15 (𝑥 = (𝑘 + 1) → (𝑥 − 1) = ((𝑘 + 1) − 1))
132131oveq2d 7373 . . . . . . . . . . . . . 14 (𝑥 = (𝑘 + 1) → (1...(𝑥 − 1)) = (1...((𝑘 + 1) − 1)))
133132raleqdv 3313 . . . . . . . . . . . . 13 (𝑥 = (𝑘 + 1) → (∀𝑦 ∈ (1...(𝑥 − 1))𝜒 ↔ ∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒))
134 sbceq1a 3750 . . . . . . . . . . . . 13 (𝑥 = (𝑘 + 1) → (𝜑[(𝑘 + 1) / 𝑥]𝜑))
135133, 134imbi12d 344 . . . . . . . . . . . 12 (𝑥 = (𝑘 + 1) → ((∀𝑦 ∈ (1...(𝑥 − 1))𝜒𝜑) ↔ (∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒[(𝑘 + 1) / 𝑥]𝜑)))
136 prmind2.7 . . . . . . . . . . . . 13 ((𝑥 ∈ ℙ ∧ ∀𝑦 ∈ (1...(𝑥 − 1))𝜒) → 𝜑)
137136ex 413 . . . . . . . . . . . 12 (𝑥 ∈ ℙ → (∀𝑦 ∈ (1...(𝑥 − 1))𝜒𝜑))
138127, 130, 135, 137vtoclgaf 3533 . . . . . . . . . . 11 ((𝑘 + 1) ∈ ℙ → (∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒[(𝑘 + 1) / 𝑥]𝜑))
139126, 138syl5com 31 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → ((𝑘 + 1) ∈ ℙ → [(𝑘 + 1) / 𝑥]𝜑))
140118, 139sylbid 239 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (∀𝑦 ∈ (2...((𝑘 + 1) − 1)) ¬ 𝑦 ∥ (𝑘 + 1) → [(𝑘 + 1) / 𝑥]𝜑))
141107, 140biimtrrid 242 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (¬ ∃𝑦 ∈ (2...((𝑘 + 1) − 1))𝑦 ∥ (𝑘 + 1) → [(𝑘 + 1) / 𝑥]𝜑))
142106, 141pm2.61d 179 . . . . . . 7 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → [(𝑘 + 1) / 𝑥]𝜑)
143142ex 413 . . . . . 6 (𝑘 ∈ ℕ → (∀𝑥 ∈ (1...𝑘)𝜑[(𝑘 + 1) / 𝑥]𝜑))
144 ralsnsg 4629 . . . . . . 7 ((𝑘 + 1) ∈ ℕ → (∀𝑥 ∈ {(𝑘 + 1)}𝜑[(𝑘 + 1) / 𝑥]𝜑))
14516, 144syl 17 . . . . . 6 (𝑘 ∈ ℕ → (∀𝑥 ∈ {(𝑘 + 1)}𝜑[(𝑘 + 1) / 𝑥]𝜑))
146143, 145sylibrd 258 . . . . 5 (𝑘 ∈ ℕ → (∀𝑥 ∈ (1...𝑘)𝜑 → ∀𝑥 ∈ {(𝑘 + 1)}𝜑))
147146ancld 551 . . . 4 (𝑘 ∈ ℕ → (∀𝑥 ∈ (1...𝑘)𝜑 → (∀𝑥 ∈ (1...𝑘)𝜑 ∧ ∀𝑥 ∈ {(𝑘 + 1)}𝜑)))
148 fzsuc 13488 . . . . . . 7 (𝑘 ∈ (ℤ‘1) → (1...(𝑘 + 1)) = ((1...𝑘) ∪ {(𝑘 + 1)}))
149109, 148sylbi 216 . . . . . 6 (𝑘 ∈ ℕ → (1...(𝑘 + 1)) = ((1...𝑘) ∪ {(𝑘 + 1)}))
150149raleqdv 3313 . . . . 5 (𝑘 ∈ ℕ → (∀𝑥 ∈ (1...(𝑘 + 1))𝜑 ↔ ∀𝑥 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})𝜑))
151 ralunb 4151 . . . . 5 (∀𝑥 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})𝜑 ↔ (∀𝑥 ∈ (1...𝑘)𝜑 ∧ ∀𝑥 ∈ {(𝑘 + 1)}𝜑))
152150, 151bitrdi 286 . . . 4 (𝑘 ∈ ℕ → (∀𝑥 ∈ (1...(𝑘 + 1))𝜑 ↔ (∀𝑥 ∈ (1...𝑘)𝜑 ∧ ∀𝑥 ∈ {(𝑘 + 1)}𝜑)))
153147, 152sylibrd 258 . . 3 (𝑘 ∈ ℕ → (∀𝑥 ∈ (1...𝑘)𝜑 → ∀𝑥 ∈ (1...(𝑘 + 1))𝜑))
1543, 5, 7, 9, 15, 153nnind 12171 . 2 (𝐴 ∈ ℕ → ∀𝑥 ∈ (1...𝐴)𝜑)
155 elfz1end 13471 . . 3 (𝐴 ∈ ℕ ↔ 𝐴 ∈ (1...𝐴))
156155biimpi 215 . 2 (𝐴 ∈ ℕ → 𝐴 ∈ (1...𝐴))
1571, 154, 156rspcdva 3582 1 (𝐴 ∈ ℕ → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  [wsbc 3739  cun 3908  {csn 4586   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  cz 12499  cuz 12763  ...cfz 13424  cdvds 16136  cprime 16547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137  df-prm 16548
This theorem is referenced by:  prmind  16562  4sqlem19  16835
  Copyright terms: Public domain W3C validator