![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbceq1d | Structured version Visualization version GIF version |
Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
Ref | Expression |
---|---|
sbceq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
sbceq1d | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | dfsbcq 3779 | . 2 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 [wsbc 3777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-cleq 2724 df-clel 2810 df-sbc 3778 |
This theorem is referenced by: sbceq1dd 3783 sbcnestgfw 4418 sbcnestgf 4423 ralrnmptw 7095 ralrnmpt 7097 tfindes 7851 findes 7892 frpoins3xpg 8125 frpoins3xp3g 8126 findcard2 9163 findcard2OLD 9283 ac6sfi 9286 indexfi 9359 ac6num 10473 nn1suc 12233 uzind4s 12891 uzind4s2 12892 fzrevral 13585 fzshftral 13588 fi1uzind 14457 wrdind 14671 wrd2ind 14672 cjth 15049 prmind2 16621 isprs 18249 isdrs 18253 joinlem 18335 meetlem 18349 istos 18370 isdlat 18474 gsumvalx 18594 mndind 18708 issrg 20010 islmod 20474 quotval 25804 nn0min 32021 wrdt2ind 32112 bnj944 33944 sdclem2 36605 fdc 36608 hdmap1ffval 40661 hdmap1fval 40662 rexrabdioph 41522 2nn0ind 41674 zindbi 41675 iotasbcq 43186 prproropreud 46167 |
Copyright terms: Public domain | W3C validator |