![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbceq1d | Structured version Visualization version GIF version |
Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
Ref | Expression |
---|---|
sbceq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
sbceq1d | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | dfsbcq 3806 | . 2 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 [wsbc 3804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 df-sbc 3805 |
This theorem is referenced by: sbceq1dd 3810 sbcnestgfw 4444 sbcnestgf 4449 ralrnmptw 7128 ralrnmpt 7130 tfindes 7900 findes 7940 frpoins3xpg 8181 frpoins3xp3g 8182 findcard2 9230 ac6sfi 9348 indexfi 9430 ac6num 10548 nn1suc 12315 uzind4s 12973 uzind4s2 12974 fzrevral 13669 fzshftral 13672 fi1uzind 14556 wrdind 14770 wrd2ind 14771 cjth 15152 prmind2 16732 isprs 18367 isdrs 18371 joinlem 18453 meetlem 18467 istos 18488 isdlat 18592 gsumvalx 18714 mndind 18863 issrg 20215 islmod 20884 quotval 26352 nn0min 32824 wrdt2ind 32920 bnj944 34914 sdclem2 37702 fdc 37705 hdmap1ffval 41752 hdmap1fval 41753 rexrabdioph 42750 2nn0ind 42902 zindbi 42903 iotasbcq 44406 prproropreud 47383 |
Copyright terms: Public domain | W3C validator |