| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbceq1d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
| Ref | Expression |
|---|---|
| sbceq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sbceq1d | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbceq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | dfsbcq 3739 | . 2 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 [wsbc 3737 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-clel 2808 df-sbc 3738 |
| This theorem is referenced by: sbceq1dd 3743 sbcnestgfw 4370 sbcnestgf 4375 ralrnmptw 7036 ralrnmpt 7038 tfindes 7802 findes 7839 frpoins3xpg 8079 frpoins3xp3g 8080 findcard2 9085 ac6sfi 9179 indexfi 9255 ac6num 10381 nn1suc 12158 uzind4s 12812 uzind4s2 12813 fzrevral 13519 fzshftral 13522 fi1uzind 14421 wrdind 14636 wrd2ind 14637 cjth 15017 prmind2 16603 isprs 18210 isdrs 18215 joinlem 18295 meetlem 18309 istos 18330 isdlat 18436 gsumvalx 18592 mndind 18744 issrg 20114 islmod 20806 quotval 26247 nn0min 32829 wrdt2ind 32963 bnj944 35022 sdclem2 37855 fdc 37858 hdmap1ffval 41967 hdmap1fval 41968 rexrabdioph 42951 2nn0ind 43102 zindbi 43103 iotasbcq 44593 prproropreud 47671 |
| Copyright terms: Public domain | W3C validator |