| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbceq1d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
| Ref | Expression |
|---|---|
| sbceq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sbceq1d | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbceq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | dfsbcq 3772 | . 2 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 [wsbc 3770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-clel 2810 df-sbc 3771 |
| This theorem is referenced by: sbceq1dd 3776 sbcnestgfw 4401 sbcnestgf 4406 ralrnmptw 7089 ralrnmpt 7091 tfindes 7863 findes 7901 frpoins3xpg 8144 frpoins3xp3g 8145 findcard2 9183 ac6sfi 9297 indexfi 9377 ac6num 10498 nn1suc 12267 uzind4s 12929 uzind4s2 12930 fzrevral 13634 fzshftral 13637 fi1uzind 14530 wrdind 14745 wrd2ind 14746 cjth 15127 prmind2 16709 isprs 18313 isdrs 18318 joinlem 18398 meetlem 18412 istos 18433 isdlat 18537 gsumvalx 18659 mndind 18811 issrg 20153 islmod 20826 quotval 26257 nn0min 32804 wrdt2ind 32934 bnj944 34974 sdclem2 37771 fdc 37774 hdmap1ffval 41819 hdmap1fval 41820 rexrabdioph 42792 2nn0ind 42944 zindbi 42945 iotasbcq 44436 prproropreud 47503 |
| Copyright terms: Public domain | W3C validator |