![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbceq1d | Structured version Visualization version GIF version |
Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
Ref | Expression |
---|---|
sbceq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
sbceq1d | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | dfsbcq 3778 | . 2 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 [wsbc 3776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-cleq 2722 df-clel 2808 df-sbc 3777 |
This theorem is referenced by: sbceq1dd 3782 sbcnestgfw 4417 sbcnestgf 4422 ralrnmptw 7094 ralrnmpt 7096 tfindes 7854 findes 7895 frpoins3xpg 8128 frpoins3xp3g 8129 findcard2 9166 findcard2OLD 9286 ac6sfi 9289 indexfi 9362 ac6num 10476 nn1suc 12238 uzind4s 12896 uzind4s2 12897 fzrevral 13590 fzshftral 13593 fi1uzind 14462 wrdind 14676 wrd2ind 14677 cjth 15054 prmind2 16626 isprs 18254 isdrs 18258 joinlem 18340 meetlem 18354 istos 18375 isdlat 18479 gsumvalx 18601 mndind 18745 issrg 20082 islmod 20618 quotval 26041 nn0min 32293 wrdt2ind 32384 bnj944 34247 sdclem2 36913 fdc 36916 hdmap1ffval 40969 hdmap1fval 40970 rexrabdioph 41834 2nn0ind 41986 zindbi 41987 iotasbcq 43498 prproropreud 46475 |
Copyright terms: Public domain | W3C validator |