| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbceq1d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
| Ref | Expression |
|---|---|
| sbceq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sbceq1d | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbceq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | dfsbcq 3738 | . 2 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 [wsbc 3736 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2806 df-sbc 3737 |
| This theorem is referenced by: sbceq1dd 3742 sbcnestgfw 4366 sbcnestgf 4371 ralrnmptw 7022 ralrnmpt 7024 tfindes 7788 findes 7825 frpoins3xpg 8065 frpoins3xp3g 8066 findcard2 9069 ac6sfi 9163 indexfi 9239 ac6num 10365 nn1suc 12142 uzind4s 12801 uzind4s2 12802 fzrevral 13507 fzshftral 13510 fi1uzind 14409 wrdind 14624 wrd2ind 14625 cjth 15005 prmind2 16591 isprs 18197 isdrs 18202 joinlem 18282 meetlem 18296 istos 18317 isdlat 18423 gsumvalx 18579 mndind 18731 issrg 20101 islmod 20792 quotval 26222 nn0min 32795 wrdt2ind 32926 bnj944 34942 sdclem2 37782 fdc 37785 hdmap1ffval 41834 hdmap1fval 41835 rexrabdioph 42827 2nn0ind 42978 zindbi 42979 iotasbcq 44469 prproropreud 47540 |
| Copyright terms: Public domain | W3C validator |