| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbceq1d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
| Ref | Expression |
|---|---|
| sbceq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sbceq1d | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbceq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | dfsbcq 3755 | . 2 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 [wsbc 3753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-sbc 3754 |
| This theorem is referenced by: sbceq1dd 3759 sbcnestgfw 4384 sbcnestgf 4389 ralrnmptw 7066 ralrnmpt 7068 tfindes 7839 findes 7876 frpoins3xpg 8119 frpoins3xp3g 8120 findcard2 9128 ac6sfi 9231 indexfi 9311 ac6num 10432 nn1suc 12208 uzind4s 12867 uzind4s2 12868 fzrevral 13573 fzshftral 13576 fi1uzind 14472 wrdind 14687 wrd2ind 14688 cjth 15069 prmind2 16655 isprs 18257 isdrs 18262 joinlem 18342 meetlem 18356 istos 18377 isdlat 18481 gsumvalx 18603 mndind 18755 issrg 20097 islmod 20770 quotval 26200 nn0min 32745 wrdt2ind 32875 bnj944 34928 sdclem2 37736 fdc 37739 hdmap1ffval 41789 hdmap1fval 41790 rexrabdioph 42782 2nn0ind 42934 zindbi 42935 iotasbcq 44426 prproropreud 47510 |
| Copyright terms: Public domain | W3C validator |