| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbceq1d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
| Ref | Expression |
|---|---|
| sbceq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sbceq1d | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbceq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | dfsbcq 3765 | . 2 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 [wsbc 3763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2726 df-clel 2808 df-sbc 3764 |
| This theorem is referenced by: sbceq1dd 3769 sbcnestgfw 4394 sbcnestgf 4399 ralrnmptw 7080 ralrnmpt 7082 tfindes 7852 findes 7890 frpoins3xpg 8133 frpoins3xp3g 8134 findcard2 9172 ac6sfi 9286 indexfi 9366 ac6num 10485 nn1suc 12254 uzind4s 12916 uzind4s2 12917 fzrevral 13618 fzshftral 13621 fi1uzind 14513 wrdind 14727 wrd2ind 14728 cjth 15109 prmind2 16689 isprs 18293 isdrs 18298 joinlem 18378 meetlem 18392 istos 18413 isdlat 18517 gsumvalx 18639 mndind 18791 issrg 20133 islmod 20806 quotval 26237 nn0min 32732 wrdt2ind 32848 bnj944 34890 sdclem2 37687 fdc 37690 hdmap1ffval 41735 hdmap1fval 41736 rexrabdioph 42742 2nn0ind 42894 zindbi 42895 iotasbcq 44387 prproropreud 47441 |
| Copyright terms: Public domain | W3C validator |