Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbceq1d | Structured version Visualization version GIF version |
Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
Ref | Expression |
---|---|
sbceq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
sbceq1d | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | dfsbcq 3700 | . 2 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1538 [wsbc 3698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1782 df-cleq 2750 df-clel 2830 df-sbc 3699 |
This theorem is referenced by: sbceq1dd 3704 sbcnestgfw 4318 sbcnestgf 4323 ralrnmptw 6857 ralrnmpt 6859 tfindes 7582 findes 7618 findcard2 8748 findcard2OLD 8806 ac6sfi 8808 indexfi 8878 ac6num 9952 nn1suc 11709 uzind4s 12361 uzind4s2 12362 fzrevral 13054 fzshftral 13057 fi1uzind 13920 wrdind 14144 wrd2ind 14145 cjth 14523 prmind2 16094 isprs 17619 isdrs 17623 joinlem 17700 meetlem 17714 istos 17724 isdlat 17882 gsumvalx 17965 mndind 18071 issrg 19338 islmod 19719 quotval 25000 nn0min 30670 wrdt2ind 30761 bnj944 32450 frpoins3xpg 33344 frpoins3xp3g 33345 sdclem2 35494 fdc 35497 hdmap1ffval 39405 hdmap1fval 39406 rexrabdioph 40143 2nn0ind 40294 zindbi 40295 iotasbcq 41549 prproropreud 44443 |
Copyright terms: Public domain | W3C validator |