| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbceq1d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
| Ref | Expression |
|---|---|
| sbceq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sbceq1d | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbceq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | dfsbcq 3752 | . 2 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 [wsbc 3750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-sbc 3751 |
| This theorem is referenced by: sbceq1dd 3756 sbcnestgfw 4380 sbcnestgf 4385 ralrnmptw 7048 ralrnmpt 7050 tfindes 7819 findes 7856 frpoins3xpg 8096 frpoins3xp3g 8097 findcard2 9105 ac6sfi 9207 indexfi 9287 ac6num 10408 nn1suc 12184 uzind4s 12843 uzind4s2 12844 fzrevral 13549 fzshftral 13552 fi1uzind 14448 wrdind 14663 wrd2ind 14664 cjth 15045 prmind2 16631 isprs 18233 isdrs 18238 joinlem 18318 meetlem 18332 istos 18353 isdlat 18457 gsumvalx 18579 mndind 18731 issrg 20073 islmod 20746 quotval 26176 nn0min 32718 wrdt2ind 32848 bnj944 34901 sdclem2 37709 fdc 37712 hdmap1ffval 41762 hdmap1fval 41763 rexrabdioph 42755 2nn0ind 42907 zindbi 42908 iotasbcq 44399 prproropreud 47483 |
| Copyright terms: Public domain | W3C validator |