Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbceq1d | Structured version Visualization version GIF version |
Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
Ref | Expression |
---|---|
sbceq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
sbceq1d | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | dfsbcq 3718 | . 2 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 [wsbc 3716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-clel 2816 df-sbc 3717 |
This theorem is referenced by: sbceq1dd 3722 sbcnestgfw 4352 sbcnestgf 4357 ralrnmptw 6970 ralrnmpt 6972 tfindes 7709 findes 7749 findcard2 8947 findcard2OLD 9056 ac6sfi 9058 indexfi 9127 ac6num 10235 nn1suc 11995 uzind4s 12648 uzind4s2 12649 fzrevral 13341 fzshftral 13344 fi1uzind 14211 wrdind 14435 wrd2ind 14436 cjth 14814 prmind2 16390 isprs 18015 isdrs 18019 joinlem 18101 meetlem 18115 istos 18136 isdlat 18240 gsumvalx 18360 mndind 18466 issrg 19743 islmod 20127 quotval 25452 nn0min 31134 wrdt2ind 31225 bnj944 32918 frpoins3xpg 33787 frpoins3xp3g 33788 sdclem2 35900 fdc 35903 hdmap1ffval 39809 hdmap1fval 39810 rexrabdioph 40616 2nn0ind 40767 zindbi 40768 iotasbcq 42055 prproropreud 44961 |
Copyright terms: Public domain | W3C validator |