| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbceq1d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
| Ref | Expression |
|---|---|
| sbceq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sbceq1d | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbceq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | dfsbcq 3746 | . 2 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 [wsbc 3744 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-sbc 3745 |
| This theorem is referenced by: sbceq1dd 3750 sbcnestgfw 4374 sbcnestgf 4379 ralrnmptw 7032 ralrnmpt 7034 tfindes 7803 findes 7840 frpoins3xpg 8080 frpoins3xp3g 8081 findcard2 9088 ac6sfi 9189 indexfi 9269 ac6num 10392 nn1suc 12169 uzind4s 12828 uzind4s2 12829 fzrevral 13534 fzshftral 13537 fi1uzind 14433 wrdind 14647 wrd2ind 14648 cjth 15029 prmind2 16615 isprs 18221 isdrs 18226 joinlem 18306 meetlem 18320 istos 18341 isdlat 18447 gsumvalx 18569 mndind 18721 issrg 20092 islmod 20786 quotval 26217 nn0min 32784 wrdt2ind 32914 bnj944 34924 sdclem2 37741 fdc 37744 hdmap1ffval 41794 hdmap1fval 41795 rexrabdioph 42787 2nn0ind 42938 zindbi 42939 iotasbcq 44430 prproropreud 47513 |
| Copyright terms: Public domain | W3C validator |