| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbceqbid | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class substitution. (Contributed by Thierry Arnoux, 4-Sep-2018.) |
| Ref | Expression |
|---|---|
| sbceqbid.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| sbceqbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| sbceqbid | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbceqbid.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sbceqbid.2 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | abbidv 2795 | . . 3 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) |
| 4 | 1, 3 | eleq12d 2822 | . 2 ⊢ (𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝐵 ∈ {𝑥 ∣ 𝜒})) |
| 5 | df-sbc 3751 | . 2 ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝐴 ∈ {𝑥 ∣ 𝜓}) | |
| 6 | df-sbc 3751 | . 2 ⊢ ([𝐵 / 𝑥]𝜒 ↔ 𝐵 ∈ {𝑥 ∣ 𝜒}) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 [wsbc 3750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3751 |
| This theorem is referenced by: sbcbidv 3806 frpoins3xpg 8096 frpoins3xp3g 8097 fpwwe2cbv 10559 fpwwe2lem2 10561 fpwwe2lem3 10562 fi1uzind 14448 isprs 18237 isdrs 18242 istos 18357 isdlat 18463 issrg 20108 islmod 20802 fdc 37732 hdmap1ffval 41782 hdmap1fval 41783 hdmapffval 41813 hdmapfval 41814 hgmapffval 41872 hgmapfval 41873 sbccomieg 42774 rexrabdioph 42775 |
| Copyright terms: Public domain | W3C validator |