MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbceqbid Structured version   Visualization version   GIF version

Theorem sbceqbid 3749
Description: Equality theorem for class substitution. (Contributed by Thierry Arnoux, 4-Sep-2018.)
Hypotheses
Ref Expression
sbceqbid.1 (𝜑𝐴 = 𝐵)
sbceqbid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
sbceqbid (𝜑 → ([𝐴 / 𝑥]𝜓[𝐵 / 𝑥]𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem sbceqbid
StepHypRef Expression
1 sbceqbid.1 . . 3 (𝜑𝐴 = 𝐵)
2 sbceqbid.2 . . . 4 (𝜑 → (𝜓𝜒))
32abbidv 2795 . . 3 (𝜑 → {𝑥𝜓} = {𝑥𝜒})
41, 3eleq12d 2822 . 2 (𝜑 → (𝐴 ∈ {𝑥𝜓} ↔ 𝐵 ∈ {𝑥𝜒}))
5 df-sbc 3743 . 2 ([𝐴 / 𝑥]𝜓𝐴 ∈ {𝑥𝜓})
6 df-sbc 3743 . 2 ([𝐵 / 𝑥]𝜒𝐵 ∈ {𝑥𝜒})
74, 5, 63bitr4g 314 1 (𝜑 → ([𝐴 / 𝑥]𝜓[𝐵 / 𝑥]𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {cab 2707  [wsbc 3742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-sbc 3743
This theorem is referenced by:  sbcbidv  3798  frpoins3xpg  8073  frpoins3xp3g  8074  fpwwe2cbv  10524  fpwwe2lem2  10526  fpwwe2lem3  10527  fi1uzind  14414  isprs  18202  isdrs  18207  istos  18322  isdlat  18428  issrg  20073  islmod  20767  fdc  37745  hdmap1ffval  41794  hdmap1fval  41795  hdmapffval  41825  hdmapfval  41826  hgmapffval  41884  hgmapfval  41885  sbccomieg  42786  rexrabdioph  42787
  Copyright terms: Public domain W3C validator