| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbceqbid | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class substitution. (Contributed by Thierry Arnoux, 4-Sep-2018.) |
| Ref | Expression |
|---|---|
| sbceqbid.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| sbceqbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| sbceqbid | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbceqbid.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sbceqbid.2 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | abbidv 2802 | . . 3 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) |
| 4 | 1, 3 | eleq12d 2829 | . 2 ⊢ (𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝐵 ∈ {𝑥 ∣ 𝜒})) |
| 5 | df-sbc 3771 | . 2 ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝐴 ∈ {𝑥 ∣ 𝜓}) | |
| 6 | df-sbc 3771 | . 2 ⊢ ([𝐵 / 𝑥]𝜒 ↔ 𝐵 ∈ {𝑥 ∣ 𝜒}) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2714 [wsbc 3770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-sbc 3771 |
| This theorem is referenced by: sbcbidv 3826 frpoins3xpg 8144 frpoins3xp3g 8145 fpwwe2cbv 10649 fpwwe2lem2 10651 fpwwe2lem3 10652 fi1uzind 14530 isprs 18313 isdrs 18318 istos 18433 isdlat 18537 issrg 20153 islmod 20826 fdc 37774 hdmap1ffval 41819 hdmap1fval 41820 hdmapffval 41850 hdmapfval 41851 hgmapffval 41909 hgmapfval 41910 sbccomieg 42783 rexrabdioph 42784 |
| Copyright terms: Public domain | W3C validator |