MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbceqbid Structured version   Visualization version   GIF version

Theorem sbceqbid 3763
Description: Equality theorem for class substitution. (Contributed by Thierry Arnoux, 4-Sep-2018.)
Hypotheses
Ref Expression
sbceqbid.1 (𝜑𝐴 = 𝐵)
sbceqbid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
sbceqbid (𝜑 → ([𝐴 / 𝑥]𝜓[𝐵 / 𝑥]𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem sbceqbid
StepHypRef Expression
1 sbceqbid.1 . . 3 (𝜑𝐴 = 𝐵)
2 sbceqbid.2 . . . 4 (𝜑 → (𝜓𝜒))
32abbidv 2796 . . 3 (𝜑 → {𝑥𝜓} = {𝑥𝜒})
41, 3eleq12d 2823 . 2 (𝜑 → (𝐴 ∈ {𝑥𝜓} ↔ 𝐵 ∈ {𝑥𝜒}))
5 df-sbc 3757 . 2 ([𝐴 / 𝑥]𝜓𝐴 ∈ {𝑥𝜓})
6 df-sbc 3757 . 2 ([𝐵 / 𝑥]𝜒𝐵 ∈ {𝑥𝜒})
74, 5, 63bitr4g 314 1 (𝜑 → ([𝐴 / 𝑥]𝜓[𝐵 / 𝑥]𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {cab 2708  [wsbc 3756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-sbc 3757
This theorem is referenced by:  sbcbidv  3812  frpoins3xpg  8122  frpoins3xp3g  8123  fpwwe2cbv  10590  fpwwe2lem2  10592  fpwwe2lem3  10593  fi1uzind  14479  isprs  18264  isdrs  18269  istos  18384  isdlat  18488  issrg  20104  islmod  20777  fdc  37746  hdmap1ffval  41796  hdmap1fval  41797  hdmapffval  41827  hdmapfval  41828  hgmapffval  41886  hgmapfval  41887  sbccomieg  42788  rexrabdioph  42789
  Copyright terms: Public domain W3C validator