![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbceqbid | Structured version Visualization version GIF version |
Description: Equality theorem for class substitution. (Contributed by Thierry Arnoux, 4-Sep-2018.) |
Ref | Expression |
---|---|
sbceqbid.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
sbceqbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
sbceqbid | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceqbid.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | sbceqbid.2 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | abbidv 2801 | . . 3 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) |
4 | 1, 3 | eleq12d 2827 | . 2 ⊢ (𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝐵 ∈ {𝑥 ∣ 𝜒})) |
5 | df-sbc 3777 | . 2 ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝐴 ∈ {𝑥 ∣ 𝜓}) | |
6 | df-sbc 3777 | . 2 ⊢ ([𝐵 / 𝑥]𝜒 ↔ 𝐵 ∈ {𝑥 ∣ 𝜒}) | |
7 | 4, 5, 6 | 3bitr4g 313 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 {cab 2709 [wsbc 3776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-sbc 3777 |
This theorem is referenced by: sbcbidv 3835 frpoins3xpg 8122 frpoins3xp3g 8123 fpwwe2cbv 10621 fpwwe2lem2 10623 fpwwe2lem3 10624 fi1uzind 14454 isprs 18246 isdrs 18250 istos 18367 isdlat 18471 issrg 20004 islmod 20467 fdc 36601 hdmap1ffval 40654 hdmap1fval 40655 hdmapffval 40685 hdmapfval 40686 hgmapffval 40744 hgmapfval 40745 sbccomieg 41516 rexrabdioph 41517 |
Copyright terms: Public domain | W3C validator |