MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbceqbid Structured version   Visualization version   GIF version

Theorem sbceqbid 3777
Description: Equality theorem for class substitution. (Contributed by Thierry Arnoux, 4-Sep-2018.)
Hypotheses
Ref Expression
sbceqbid.1 (𝜑𝐴 = 𝐵)
sbceqbid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
sbceqbid (𝜑 → ([𝐴 / 𝑥]𝜓[𝐵 / 𝑥]𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem sbceqbid
StepHypRef Expression
1 sbceqbid.1 . . 3 (𝜑𝐴 = 𝐵)
2 sbceqbid.2 . . . 4 (𝜑 → (𝜓𝜒))
32abbidv 2802 . . 3 (𝜑 → {𝑥𝜓} = {𝑥𝜒})
41, 3eleq12d 2829 . 2 (𝜑 → (𝐴 ∈ {𝑥𝜓} ↔ 𝐵 ∈ {𝑥𝜒}))
5 df-sbc 3771 . 2 ([𝐴 / 𝑥]𝜓𝐴 ∈ {𝑥𝜓})
6 df-sbc 3771 . 2 ([𝐵 / 𝑥]𝜒𝐵 ∈ {𝑥𝜒})
74, 5, 63bitr4g 314 1 (𝜑 → ([𝐴 / 𝑥]𝜓[𝐵 / 𝑥]𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {cab 2714  [wsbc 3770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-sbc 3771
This theorem is referenced by:  sbcbidv  3826  frpoins3xpg  8144  frpoins3xp3g  8145  fpwwe2cbv  10649  fpwwe2lem2  10651  fpwwe2lem3  10652  fi1uzind  14530  isprs  18313  isdrs  18318  istos  18433  isdlat  18537  issrg  20153  islmod  20826  fdc  37774  hdmap1ffval  41819  hdmap1fval  41820  hdmapffval  41850  hdmapfval  41851  hgmapffval  41909  hgmapfval  41910  sbccomieg  42783  rexrabdioph  42784
  Copyright terms: Public domain W3C validator