| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbceqbid | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class substitution. (Contributed by Thierry Arnoux, 4-Sep-2018.) |
| Ref | Expression |
|---|---|
| sbceqbid.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| sbceqbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| sbceqbid | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbceqbid.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sbceqbid.2 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | abbidv 2795 | . . 3 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) |
| 4 | 1, 3 | eleq12d 2822 | . 2 ⊢ (𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝐵 ∈ {𝑥 ∣ 𝜒})) |
| 5 | df-sbc 3743 | . 2 ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝐴 ∈ {𝑥 ∣ 𝜓}) | |
| 6 | df-sbc 3743 | . 2 ⊢ ([𝐵 / 𝑥]𝜒 ↔ 𝐵 ∈ {𝑥 ∣ 𝜒}) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 [wsbc 3742 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3743 |
| This theorem is referenced by: sbcbidv 3798 frpoins3xpg 8073 frpoins3xp3g 8074 fpwwe2cbv 10524 fpwwe2lem2 10526 fpwwe2lem3 10527 fi1uzind 14414 isprs 18202 isdrs 18207 istos 18322 isdlat 18428 issrg 20073 islmod 20767 fdc 37745 hdmap1ffval 41794 hdmap1fval 41795 hdmapffval 41825 hdmapfval 41826 hgmapffval 41884 hgmapfval 41885 sbccomieg 42786 rexrabdioph 42787 |
| Copyright terms: Public domain | W3C validator |