Step | Hyp | Ref
| Expression |
1 | | sdc.12 |
. . 3
⊢
Ⅎ𝑘𝜑 |
2 | | sdc.13 |
. . . . . . . 8
⊢ (𝜑 → 𝐺:𝑍⟶𝐽) |
3 | 2 | ffvelrnda 6674 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ 𝐽) |
4 | | sdc.10 |
. . . . . . . . 9
⊢ 𝐽 = {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} |
5 | 4 | eleq2i 2851 |
. . . . . . . 8
⊢ ((𝐺‘𝑘) ∈ 𝐽 ↔ (𝐺‘𝑘) ∈ {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)}) |
6 | | nfcv 2926 |
. . . . . . . . . 10
⊢
Ⅎ𝑔𝑍 |
7 | | nfv 1873 |
. . . . . . . . . . 11
⊢
Ⅎ𝑔(𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 |
8 | | nfsbc1v 3695 |
. . . . . . . . . . 11
⊢
Ⅎ𝑔[(𝐺‘𝑘) / 𝑔]𝜓 |
9 | 7, 8 | nfan 1862 |
. . . . . . . . . 10
⊢
Ⅎ𝑔((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓) |
10 | 6, 9 | nfrex 3247 |
. . . . . . . . 9
⊢
Ⅎ𝑔∃𝑛 ∈ 𝑍 ((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓) |
11 | | fvex 6509 |
. . . . . . . . 9
⊢ (𝐺‘𝑘) ∈ V |
12 | | feq1 6322 |
. . . . . . . . . . 11
⊢ (𝑔 = (𝐺‘𝑘) → (𝑔:(𝑀...𝑛)⟶𝐴 ↔ (𝐺‘𝑘):(𝑀...𝑛)⟶𝐴)) |
13 | | sbceq1a 3686 |
. . . . . . . . . . 11
⊢ (𝑔 = (𝐺‘𝑘) → (𝜓 ↔ [(𝐺‘𝑘) / 𝑔]𝜓)) |
14 | 12, 13 | anbi12d 621 |
. . . . . . . . . 10
⊢ (𝑔 = (𝐺‘𝑘) → ((𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓) ↔ ((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓))) |
15 | 14 | rexbidv 3236 |
. . . . . . . . 9
⊢ (𝑔 = (𝐺‘𝑘) → (∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓) ↔ ∃𝑛 ∈ 𝑍 ((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓))) |
16 | 10, 11, 15 | elabf 3573 |
. . . . . . . 8
⊢ ((𝐺‘𝑘) ∈ {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} ↔ ∃𝑛 ∈ 𝑍 ((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓)) |
17 | 5, 16 | bitri 267 |
. . . . . . 7
⊢ ((𝐺‘𝑘) ∈ 𝐽 ↔ ∃𝑛 ∈ 𝑍 ((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓)) |
18 | 3, 17 | sylib 210 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ∃𝑛 ∈ 𝑍 ((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓)) |
19 | | fdm 6349 |
. . . . . . . . . 10
⊢ ((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 → dom (𝐺‘𝑘) = (𝑀...𝑛)) |
20 | 19 | adantr 473 |
. . . . . . . . 9
⊢ (((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓) → dom (𝐺‘𝑘) = (𝑀...𝑛)) |
21 | | fveq2 6496 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑀 → (𝐺‘𝑥) = (𝐺‘𝑀)) |
22 | | oveq2 6982 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑀 → (𝑀...𝑥) = (𝑀...𝑀)) |
23 | 22 | mpteq1d 5012 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑀 → (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚))) |
24 | 21, 23 | eqeq12d 2787 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑀 → ((𝐺‘𝑥) = (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚)) ↔ (𝐺‘𝑀) = (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚)))) |
25 | 24 | imbi2d 333 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑀 → ((𝜑 → (𝐺‘𝑥) = (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚))) ↔ (𝜑 → (𝐺‘𝑀) = (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚))))) |
26 | | fveq2 6496 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑤 → (𝐺‘𝑥) = (𝐺‘𝑤)) |
27 | | oveq2 6982 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑤 → (𝑀...𝑥) = (𝑀...𝑤)) |
28 | 27 | mpteq1d 5012 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑤 → (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚))) |
29 | 26, 28 | eqeq12d 2787 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑤 → ((𝐺‘𝑥) = (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚)) ↔ (𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) |
30 | 29 | imbi2d 333 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑤 → ((𝜑 → (𝐺‘𝑥) = (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚))) ↔ (𝜑 → (𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚))))) |
31 | | fveq2 6496 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = (𝑤 + 1) → (𝐺‘𝑥) = (𝐺‘(𝑤 + 1))) |
32 | | oveq2 6982 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = (𝑤 + 1) → (𝑀...𝑥) = (𝑀...(𝑤 + 1))) |
33 | 32 | mpteq1d 5012 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = (𝑤 + 1) → (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))) |
34 | 31, 33 | eqeq12d 2787 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = (𝑤 + 1) → ((𝐺‘𝑥) = (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚)) ↔ (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)))) |
35 | 34 | imbi2d 333 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝑤 + 1) → ((𝜑 → (𝐺‘𝑥) = (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚))) ↔ (𝜑 → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))))) |
36 | | fveq2 6496 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑘 → (𝐺‘𝑥) = (𝐺‘𝑘)) |
37 | | oveq2 6982 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑘 → (𝑀...𝑥) = (𝑀...𝑘)) |
38 | 37 | mpteq1d 5012 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑘 → (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚))) |
39 | 36, 38 | eqeq12d 2787 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑘 → ((𝐺‘𝑥) = (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚)) ↔ (𝐺‘𝑘) = (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)))) |
40 | 39 | imbi2d 333 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑘 → ((𝜑 → (𝐺‘𝑥) = (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚))) ↔ (𝜑 → (𝐺‘𝑘) = (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚))))) |
41 | | fveq2 6496 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑚 = 𝑘 → (𝐺‘𝑚) = (𝐺‘𝑘)) |
42 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑚 = 𝑘 → 𝑚 = 𝑘) |
43 | 41, 42 | fveq12d 6503 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑚 = 𝑘 → ((𝐺‘𝑚)‘𝑚) = ((𝐺‘𝑘)‘𝑘)) |
44 | | eqid 2772 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚)) |
45 | | fvex 6509 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐺‘𝑘)‘𝑘) ∈ V |
46 | 43, 44, 45 | fvmpt 6593 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ (𝑀...𝑀) → ((𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑘) = ((𝐺‘𝑘)‘𝑘)) |
47 | 46 | adantl 474 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑀)) → ((𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑘) = ((𝐺‘𝑘)‘𝑘)) |
48 | | elfz1eq 12732 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ (𝑀...𝑀) → 𝑘 = 𝑀) |
49 | 48 | adantl 474 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑀)) → 𝑘 = 𝑀) |
50 | 49 | fveq2d 6500 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑀)) → (𝐺‘𝑘) = (𝐺‘𝑀)) |
51 | 50 | fveq1d 6498 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑀)) → ((𝐺‘𝑘)‘𝑘) = ((𝐺‘𝑀)‘𝑘)) |
52 | 47, 51 | eqtr2d 2809 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑀)) → ((𝐺‘𝑀)‘𝑘) = ((𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑘)) |
53 | 52 | ex 405 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑘 ∈ (𝑀...𝑀) → ((𝐺‘𝑀)‘𝑘) = ((𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑘))) |
54 | 1, 53 | ralrimi 3160 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑀)((𝐺‘𝑀)‘𝑘) = ((𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑘)) |
55 | | sdc.14 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐺‘𝑀):(𝑀...𝑀)⟶𝐴) |
56 | 55 | ffnd 6342 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝐺‘𝑀) Fn (𝑀...𝑀)) |
57 | | fvex 6509 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐺‘𝑚)‘𝑚) ∈ V |
58 | 57, 44 | fnmpti 6318 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚)) Fn (𝑀...𝑀) |
59 | | eqfnfv 6625 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐺‘𝑀) Fn (𝑀...𝑀) ∧ (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚)) Fn (𝑀...𝑀)) → ((𝐺‘𝑀) = (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚)) ↔ ∀𝑘 ∈ (𝑀...𝑀)((𝐺‘𝑀)‘𝑘) = ((𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑘))) |
60 | 56, 58, 59 | sylancl 577 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝐺‘𝑀) = (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚)) ↔ ∀𝑘 ∈ (𝑀...𝑀)((𝐺‘𝑀)‘𝑘) = ((𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑘))) |
61 | 54, 60 | mpbird 249 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐺‘𝑀) = (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚))) |
62 | 61 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 ∈ ℤ → (𝜑 → (𝐺‘𝑀) = (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚)))) |
63 | | sdc.1 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑍 =
(ℤ≥‘𝑀) |
64 | 63 | eleq2i 2851 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ 𝑍 ↔ 𝑤 ∈ (ℤ≥‘𝑀)) |
65 | 2 | ffvelrnda 6674 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝐺‘𝑤) ∈ 𝐽) |
66 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑤 ∈ 𝑍) |
67 | | 3simpa 1128 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎) → (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))) |
68 | 67 | reximi 3184 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(∃𝑘 ∈
𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎) → ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))) |
69 | 68 | ss2abi 3927 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ⊆ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} |
70 | 63 | fvexi 6510 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 𝑍 ∈ V |
71 | | nfv 1873 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
Ⅎ𝑘 𝑤 ∈ 𝑍 |
72 | 1, 71 | nfan 1862 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
Ⅎ𝑘(𝜑 ∧ 𝑤 ∈ 𝑍) |
73 | | sdc.6 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
74 | 73 | adantr 473 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝐴 ∈ 𝑉) |
75 | | simpl 475 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘))) → ℎ:(𝑀...(𝑘 + 1))⟶𝐴) |
76 | | ovex 7006 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑀...(𝑘 + 1)) ∈ V |
77 | | elmapg 8217 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑀...(𝑘 + 1)) ∈ V) → (ℎ ∈ (𝐴 ↑𝑚 (𝑀...(𝑘 + 1))) ↔ ℎ:(𝑀...(𝑘 + 1))⟶𝐴)) |
78 | 76, 77 | mpan2 678 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝐴 ∈ 𝑉 → (ℎ ∈ (𝐴 ↑𝑚 (𝑀...(𝑘 + 1))) ↔ ℎ:(𝑀...(𝑘 + 1))⟶𝐴)) |
79 | 75, 78 | syl5ibr 238 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝐴 ∈ 𝑉 → ((ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘))) → ℎ ∈ (𝐴 ↑𝑚 (𝑀...(𝑘 + 1))))) |
80 | 79 | abssdv 3929 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝐴 ∈ 𝑉 → {ℎ ∣ (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ⊆ (𝐴 ↑𝑚 (𝑀...(𝑘 + 1)))) |
81 | 74, 80 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → {ℎ ∣ (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ⊆ (𝐴 ↑𝑚 (𝑀...(𝑘 + 1)))) |
82 | | ovex 7006 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝐴 ↑𝑚
(𝑀...(𝑘 + 1))) ∈ V |
83 | | ssexg 5079 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (({ℎ ∣ (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ⊆ (𝐴 ↑𝑚 (𝑀...(𝑘 + 1))) ∧ (𝐴 ↑𝑚 (𝑀...(𝑘 + 1))) ∈ V) → {ℎ ∣ (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ∈ V) |
84 | 81, 82, 83 | sylancl 577 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → {ℎ ∣ (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ∈ V) |
85 | 84 | a1d 25 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑘 ∈ 𝑍 → {ℎ ∣ (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ∈ V)) |
86 | 72, 85 | ralrimi 3160 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ∀𝑘 ∈ 𝑍 {ℎ ∣ (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ∈ V) |
87 | | abrexex2g 7475 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑍 ∈ V ∧ ∀𝑘 ∈ 𝑍 {ℎ ∣ (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ∈ V) → {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ∈ V) |
88 | 70, 86, 87 | sylancr 578 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ∈ V) |
89 | | ssexg 5079 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (({ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ⊆ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ∧ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ∈ V) → {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V) |
90 | 69, 88, 89 | sylancr 578 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V) |
91 | | eqeq1 2776 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑥 = (𝐺‘𝑤) → (𝑥 = (ℎ ↾ (𝑀...𝑘)) ↔ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))) |
92 | 91 | 3anbi2d 1420 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥 = (𝐺‘𝑤) → ((ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎) ↔ (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎))) |
93 | 92 | rexbidv 3236 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑥 = (𝐺‘𝑤) → (∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎) ↔ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎))) |
94 | 93 | abbidv 2837 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥 = (𝐺‘𝑤) → {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) |
95 | 94 | eleq1d 2844 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑥 = (𝐺‘𝑤) → ({ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V ↔ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V)) |
96 | | oveq2 6982 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥 = (𝐺‘𝑤) → (𝑤𝐹𝑥) = (𝑤𝐹(𝐺‘𝑤))) |
97 | 96, 94 | eqeq12d 2787 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑥 = (𝐺‘𝑤) → ((𝑤𝐹𝑥) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ↔ (𝑤𝐹(𝐺‘𝑤)) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)})) |
98 | 95, 97 | imbi12d 337 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 = (𝐺‘𝑤) → (({ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V → (𝑤𝐹𝑥) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) ↔ ({ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V → (𝑤𝐹(𝐺‘𝑤)) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}))) |
99 | 98 | imbi2d 333 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 = (𝐺‘𝑤) → ((𝑤 ∈ 𝑍 → ({ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V → (𝑤𝐹𝑥) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)})) ↔ (𝑤 ∈ 𝑍 → ({ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V → (𝑤𝐹(𝐺‘𝑤)) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)})))) |
100 | | sdc.11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ 𝐹 = (𝑤 ∈ 𝑍, 𝑥 ∈ 𝐽 ↦ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) |
101 | 100 | ovmpt4g 7111 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑤 ∈ 𝑍 ∧ 𝑥 ∈ 𝐽 ∧ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V) → (𝑤𝐹𝑥) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) |
102 | 101 | 3com12 1103 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑥 ∈ 𝐽 ∧ 𝑤 ∈ 𝑍 ∧ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V) → (𝑤𝐹𝑥) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) |
103 | 102 | 3exp 1099 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 ∈ 𝐽 → (𝑤 ∈ 𝑍 → ({ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V → (𝑤𝐹𝑥) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}))) |
104 | 99, 103 | vtoclga 3487 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐺‘𝑤) ∈ 𝐽 → (𝑤 ∈ 𝑍 → ({ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V → (𝑤𝐹(𝐺‘𝑤)) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}))) |
105 | 65, 66, 90, 104 | syl3c 66 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤𝐹(𝐺‘𝑤)) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) |
106 | 105, 69 | syl6eqss 3905 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤𝐹(𝐺‘𝑤)) ⊆ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))}) |
107 | | sdc.15 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝐺‘(𝑤 + 1)) ∈ (𝑤𝐹(𝐺‘𝑤))) |
108 | 106, 107 | sseldd 3853 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝐺‘(𝑤 + 1)) ∈ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))}) |
109 | | fvex 6509 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐺‘(𝑤 + 1)) ∈ V |
110 | | feq1 6322 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (ℎ = (𝐺‘(𝑤 + 1)) → (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ↔ (𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴)) |
111 | | reseq1 5686 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (ℎ = (𝐺‘(𝑤 + 1)) → (ℎ ↾ (𝑀...𝑘)) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))) |
112 | 111 | eqeq2d 2782 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (ℎ = (𝐺‘(𝑤 + 1)) → ((𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ↔ (𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)))) |
113 | 110, 112 | anbi12d 621 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (ℎ = (𝐺‘(𝑤 + 1)) → ((ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘))) ↔ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))))) |
114 | 113 | rexbidv 3236 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (ℎ = (𝐺‘(𝑤 + 1)) → (∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘))) ↔ ∃𝑘 ∈ 𝑍 ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))))) |
115 | 109, 114 | elab 3576 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐺‘(𝑤 + 1)) ∈ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ↔ ∃𝑘 ∈ 𝑍 ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)))) |
116 | 108, 115 | sylib 210 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ∃𝑘 ∈ 𝑍 ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)))) |
117 | | nfv 1873 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘((𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))) |
118 | | simprl 758 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴) |
119 | | fzssp1 12764 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑀...𝑘) ⊆ (𝑀...(𝑘 + 1)) |
120 | | fssres 6370 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝑀...𝑘) ⊆ (𝑀...(𝑘 + 1))) → ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)):(𝑀...𝑘)⟶𝐴) |
121 | 118, 119,
120 | sylancl 577 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)):(𝑀...𝑘)⟶𝐴) |
122 | 121 | fdmd 6350 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → dom ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑀...𝑘)) |
123 | | eqid 2772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) |
124 | 57, 123 | fnmpti 6318 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) Fn (𝑀...𝑤) |
125 | | simprr 760 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚))) |
126 | 125 | fneq1d 6276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) Fn (𝑀...𝑤) ↔ (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) Fn (𝑀...𝑤))) |
127 | 124, 126 | mpbiri 250 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) Fn (𝑀...𝑤)) |
128 | | fndm 6285 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) Fn (𝑀...𝑤) → dom ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑀...𝑤)) |
129 | 127, 128 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → dom ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑀...𝑤)) |
130 | 122, 129 | eqtr3d 2810 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑀...𝑘) = (𝑀...𝑤)) |
131 | | simplr 756 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → 𝑘 ∈ 𝑍) |
132 | 131, 63 | syl6eleq 2870 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → 𝑘 ∈ (ℤ≥‘𝑀)) |
133 | | fzopth 12758 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → ((𝑀...𝑘) = (𝑀...𝑤) ↔ (𝑀 = 𝑀 ∧ 𝑘 = 𝑤))) |
134 | 132, 133 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ((𝑀...𝑘) = (𝑀...𝑤) ↔ (𝑀 = 𝑀 ∧ 𝑘 = 𝑤))) |
135 | 130, 134 | mpbid 224 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑀 = 𝑀 ∧ 𝑘 = 𝑤)) |
136 | 135 | simprd 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → 𝑘 = 𝑤) |
137 | 136 | oveq1d 6989 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑘 + 1) = (𝑤 + 1)) |
138 | 137 | oveq2d 6990 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑀...(𝑘 + 1)) = (𝑀...(𝑤 + 1))) |
139 | | elfzp1 12771 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝑥 ∈ (𝑀...(𝑘 + 1)) ↔ (𝑥 ∈ (𝑀...𝑘) ∨ 𝑥 = (𝑘 + 1)))) |
140 | 132, 139 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑥 ∈ (𝑀...(𝑘 + 1)) ↔ (𝑥 ∈ (𝑀...𝑘) ∨ 𝑥 = (𝑘 + 1)))) |
141 | 130 | reseq2d 5692 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑘)) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑤))) |
142 | | fzssp1 12764 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑀...𝑤) ⊆ (𝑀...(𝑤 + 1)) |
143 | | resmpt 5747 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑀...𝑤) ⊆ (𝑀...(𝑤 + 1)) → ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑤)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚))) |
144 | 142, 143 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑤)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) |
145 | 141, 144 | syl6req 2825 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑘))) |
146 | 125, 145 | eqtrd 2808 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑘))) |
147 | 146 | fveq1d 6498 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))‘𝑥) = (((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑘))‘𝑥)) |
148 | | fvres 6515 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑥 ∈ (𝑀...𝑘) → (((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))‘𝑥) = ((𝐺‘(𝑤 + 1))‘𝑥)) |
149 | | fvres 6515 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑥 ∈ (𝑀...𝑘) → (((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑘))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥)) |
150 | 148, 149 | eqeq12d 2787 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥 ∈ (𝑀...𝑘) → ((((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))‘𝑥) = (((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑘))‘𝑥) ↔ ((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥))) |
151 | 147, 150 | syl5ibcom 237 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑥 ∈ (𝑀...𝑘) → ((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥))) |
152 | 137 | eqeq2d 2782 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑥 = (𝑘 + 1) ↔ 𝑥 = (𝑤 + 1))) |
153 | 136, 132 | eqeltrrd 2861 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → 𝑤 ∈ (ℤ≥‘𝑀)) |
154 | | peano2uz 12113 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑤 ∈
(ℤ≥‘𝑀) → (𝑤 + 1) ∈
(ℤ≥‘𝑀)) |
155 | | eluzfz2 12729 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑤 + 1) ∈
(ℤ≥‘𝑀) → (𝑤 + 1) ∈ (𝑀...(𝑤 + 1))) |
156 | | fveq2 6496 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑚 = (𝑤 + 1) → (𝐺‘𝑚) = (𝐺‘(𝑤 + 1))) |
157 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑚 = (𝑤 + 1) → 𝑚 = (𝑤 + 1)) |
158 | 156, 157 | fveq12d 6503 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑚 = (𝑤 + 1) → ((𝐺‘𝑚)‘𝑚) = ((𝐺‘(𝑤 + 1))‘(𝑤 + 1))) |
159 | | eqid 2772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) |
160 | | fvex 6509 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝐺‘(𝑤 + 1))‘(𝑤 + 1)) ∈ V |
161 | 158, 159,
160 | fvmpt 6593 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑤 + 1) ∈ (𝑀...(𝑤 + 1)) → ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘(𝑤 + 1)) = ((𝐺‘(𝑤 + 1))‘(𝑤 + 1))) |
162 | 153, 154,
155, 161 | 4syl 19 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘(𝑤 + 1)) = ((𝐺‘(𝑤 + 1))‘(𝑤 + 1))) |
163 | 162 | eqcomd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ((𝐺‘(𝑤 + 1))‘(𝑤 + 1)) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘(𝑤 + 1))) |
164 | | fveq2 6496 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑥 = (𝑤 + 1) → ((𝐺‘(𝑤 + 1))‘𝑥) = ((𝐺‘(𝑤 + 1))‘(𝑤 + 1))) |
165 | | fveq2 6496 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑥 = (𝑤 + 1) → ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘(𝑤 + 1))) |
166 | 164, 165 | eqeq12d 2787 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑥 = (𝑤 + 1) → (((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥) ↔ ((𝐺‘(𝑤 + 1))‘(𝑤 + 1)) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘(𝑤 + 1)))) |
167 | 163, 166 | syl5ibrcom 239 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑥 = (𝑤 + 1) → ((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥))) |
168 | 152, 167 | sylbid 232 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑥 = (𝑘 + 1) → ((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥))) |
169 | 151, 168 | jaod 845 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ((𝑥 ∈ (𝑀...𝑘) ∨ 𝑥 = (𝑘 + 1)) → ((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥))) |
170 | 140, 169 | sylbid 232 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑥 ∈ (𝑀...(𝑘 + 1)) → ((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥))) |
171 | 170 | ralrimiv 3125 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ∀𝑥 ∈ (𝑀...(𝑘 + 1))((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥)) |
172 | | ffn 6341 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 → (𝐺‘(𝑤 + 1)) Fn (𝑀...(𝑘 + 1))) |
173 | 172 | ad2antrl 715 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝐺‘(𝑤 + 1)) Fn (𝑀...(𝑘 + 1))) |
174 | 57, 159 | fnmpti 6318 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) Fn (𝑀...(𝑤 + 1)) |
175 | | eqfnfv2 6626 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝐺‘(𝑤 + 1)) Fn (𝑀...(𝑘 + 1)) ∧ (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) Fn (𝑀...(𝑤 + 1))) → ((𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↔ ((𝑀...(𝑘 + 1)) = (𝑀...(𝑤 + 1)) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥)))) |
176 | 173, 174,
175 | sylancl 577 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ((𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↔ ((𝑀...(𝑘 + 1)) = (𝑀...(𝑤 + 1)) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥)))) |
177 | 138, 171,
176 | mpbir2and 700 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))) |
178 | 177 | expr 449 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ (𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴) → (((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)))) |
179 | | eqeq1 2776 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) → ((𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) ↔ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) |
180 | 179 | imbi1d 334 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) → (((𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))) ↔ (((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))))) |
181 | 178, 180 | syl5ibrcom 239 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ (𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴) → ((𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) → ((𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))))) |
182 | 181 | expimpd 446 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) → (((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))) → ((𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))))) |
183 | 182 | ex 405 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑘 ∈ 𝑍 → (((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))) → ((𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)))))) |
184 | 72, 117, 183 | rexlimd 3254 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (∃𝑘 ∈ 𝑍 ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))) → ((𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))))) |
185 | 116, 184 | mpd 15 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ((𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)))) |
186 | 185 | expcom 406 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ 𝑍 → (𝜑 → ((𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))))) |
187 | 64, 186 | sylbir 227 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈
(ℤ≥‘𝑀) → (𝜑 → ((𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))))) |
188 | 187 | a2d 29 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 ∈
(ℤ≥‘𝑀) → ((𝜑 → (𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚))) → (𝜑 → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))))) |
189 | 25, 30, 35, 40, 62, 188 | uzind4 12118 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝜑 → (𝐺‘𝑘) = (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)))) |
190 | 189, 63 | eleq2s 2878 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ 𝑍 → (𝜑 → (𝐺‘𝑘) = (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)))) |
191 | 190 | impcom 399 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚))) |
192 | 191 | dmeqd 5620 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → dom (𝐺‘𝑘) = dom (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚))) |
193 | | dmmptg 5932 |
. . . . . . . . . . . . . 14
⊢
(∀𝑚 ∈
(𝑀...𝑘)((𝐺‘𝑚)‘𝑚) ∈ V → dom (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑀...𝑘)) |
194 | 57 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ (𝑀...𝑘) → ((𝐺‘𝑚)‘𝑚) ∈ V) |
195 | 193, 194 | mprg 3096 |
. . . . . . . . . . . . 13
⊢ dom
(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑀...𝑘) |
196 | 192, 195 | syl6eq 2824 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → dom (𝐺‘𝑘) = (𝑀...𝑘)) |
197 | 196 | eqeq1d 2774 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (dom (𝐺‘𝑘) = (𝑀...𝑛) ↔ (𝑀...𝑘) = (𝑀...𝑛))) |
198 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) |
199 | 198, 63 | syl6eleq 2870 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ (ℤ≥‘𝑀)) |
200 | | fzopth 12758 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → ((𝑀...𝑘) = (𝑀...𝑛) ↔ (𝑀 = 𝑀 ∧ 𝑘 = 𝑛))) |
201 | 199, 200 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑀...𝑘) = (𝑀...𝑛) ↔ (𝑀 = 𝑀 ∧ 𝑘 = 𝑛))) |
202 | 197, 201 | bitrd 271 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (dom (𝐺‘𝑘) = (𝑀...𝑛) ↔ (𝑀 = 𝑀 ∧ 𝑘 = 𝑛))) |
203 | | simpr 477 |
. . . . . . . . . 10
⊢ ((𝑀 = 𝑀 ∧ 𝑘 = 𝑛) → 𝑘 = 𝑛) |
204 | 202, 203 | syl6bi 245 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (dom (𝐺‘𝑘) = (𝑀...𝑛) → 𝑘 = 𝑛)) |
205 | 20, 204 | syl5 34 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓) → 𝑘 = 𝑛)) |
206 | | oveq2 6982 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (𝑀...𝑛) = (𝑀...𝑘)) |
207 | 206 | feq2d 6327 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → ((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ↔ (𝐺‘𝑘):(𝑀...𝑘)⟶𝐴)) |
208 | | sdc.4 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (𝜓 ↔ 𝜃)) |
209 | 208 | sbcbidv 3725 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → ([(𝐺‘𝑘) / 𝑔]𝜓 ↔ [(𝐺‘𝑘) / 𝑔]𝜃)) |
210 | 207, 209 | anbi12d 621 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → (((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓) ↔ ((𝐺‘𝑘):(𝑀...𝑘)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜃))) |
211 | 210 | equcoms 1977 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → (((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓) ↔ ((𝐺‘𝑘):(𝑀...𝑘)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜃))) |
212 | 211 | biimpcd 241 |
. . . . . . . 8
⊢ (((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓) → (𝑘 = 𝑛 → ((𝐺‘𝑘):(𝑀...𝑘)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜃))) |
213 | 205, 212 | sylcom 30 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓) → ((𝐺‘𝑘):(𝑀...𝑘)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜃))) |
214 | 213 | rexlimdvw 3229 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (∃𝑛 ∈ 𝑍 ((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓) → ((𝐺‘𝑘):(𝑀...𝑘)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜃))) |
215 | 18, 214 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐺‘𝑘):(𝑀...𝑘)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜃)) |
216 | 215 | simpld 487 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘):(𝑀...𝑘)⟶𝐴) |
217 | | eluzfz2 12729 |
. . . . 5
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑘 ∈ (𝑀...𝑘)) |
218 | 199, 217 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ (𝑀...𝑘)) |
219 | 216, 218 | ffvelrnd 6675 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐺‘𝑘)‘𝑘) ∈ 𝐴) |
220 | 43 | cbvmptv 5024 |
. . 3
⊢ (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑘 ∈ 𝑍 ↦ ((𝐺‘𝑘)‘𝑘)) |
221 | 1, 219, 220 | fmptdf 6702 |
. 2
⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)):𝑍⟶𝐴) |
222 | 215 | simprd 488 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → [(𝐺‘𝑘) / 𝑔]𝜃) |
223 | 191, 222 | sbceq1dd 3681 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → [(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜃) |
224 | 223 | ex 405 |
. . . 4
⊢ (𝜑 → (𝑘 ∈ 𝑍 → [(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜃)) |
225 | 1, 224 | ralrimi 3160 |
. . 3
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 [(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜃) |
226 | | mpteq1 5011 |
. . . . . 6
⊢ ((𝑀...𝑛) = (𝑀...𝑘) → (𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚))) |
227 | | dfsbcq 3677 |
. . . . . 6
⊢ ((𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) → ([(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓 ↔ [(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓)) |
228 | 206, 226,
227 | 3syl 18 |
. . . . 5
⊢ (𝑛 = 𝑘 → ([(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓 ↔ [(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓)) |
229 | 208 | sbcbidv 3725 |
. . . . 5
⊢ (𝑛 = 𝑘 → ([(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓 ↔ [(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜃)) |
230 | 228, 229 | bitrd 271 |
. . . 4
⊢ (𝑛 = 𝑘 → ([(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓 ↔ [(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜃)) |
231 | 230 | cbvralv 3377 |
. . 3
⊢
(∀𝑛 ∈
𝑍 [(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓 ↔ ∀𝑘 ∈ 𝑍 [(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜃) |
232 | 225, 231 | sylibr 226 |
. 2
⊢ (𝜑 → ∀𝑛 ∈ 𝑍 [(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓) |
233 | 70 | mptex 6810 |
. . 3
⊢ (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) ∈ V |
234 | | feq1 6322 |
. . . 4
⊢ (𝑓 = (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) → (𝑓:𝑍⟶𝐴 ↔ (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)):𝑍⟶𝐴)) |
235 | | vex 3412 |
. . . . . . . 8
⊢ 𝑓 ∈ V |
236 | 235 | resex 5741 |
. . . . . . 7
⊢ (𝑓 ↾ (𝑀...𝑛)) ∈ V |
237 | | sdc.2 |
. . . . . . 7
⊢ (𝑔 = (𝑓 ↾ (𝑀...𝑛)) → (𝜓 ↔ 𝜒)) |
238 | 236, 237 | sbcie 3710 |
. . . . . 6
⊢
([(𝑓 ↾
(𝑀...𝑛)) / 𝑔]𝜓 ↔ 𝜒) |
239 | | reseq1 5686 |
. . . . . . . 8
⊢ (𝑓 = (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) → (𝑓 ↾ (𝑀...𝑛)) = ((𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑛))) |
240 | | fzssuz 12762 |
. . . . . . . . . 10
⊢ (𝑀...𝑛) ⊆ (ℤ≥‘𝑀) |
241 | 240, 63 | sseqtr4i 3888 |
. . . . . . . . 9
⊢ (𝑀...𝑛) ⊆ 𝑍 |
242 | | resmpt 5747 |
. . . . . . . . 9
⊢ ((𝑀...𝑛) ⊆ 𝑍 → ((𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑛)) = (𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚))) |
243 | 241, 242 | ax-mp 5 |
. . . . . . . 8
⊢ ((𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑛)) = (𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) |
244 | 239, 243 | syl6eq 2824 |
. . . . . . 7
⊢ (𝑓 = (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) → (𝑓 ↾ (𝑀...𝑛)) = (𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚))) |
245 | 244 | sbceq1d 3680 |
. . . . . 6
⊢ (𝑓 = (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) → ([(𝑓 ↾ (𝑀...𝑛)) / 𝑔]𝜓 ↔ [(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓)) |
246 | 238, 245 | syl5bbr 277 |
. . . . 5
⊢ (𝑓 = (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) → (𝜒 ↔ [(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓)) |
247 | 246 | ralbidv 3141 |
. . . 4
⊢ (𝑓 = (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) → (∀𝑛 ∈ 𝑍 𝜒 ↔ ∀𝑛 ∈ 𝑍 [(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓)) |
248 | 234, 247 | anbi12d 621 |
. . 3
⊢ (𝑓 = (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) → ((𝑓:𝑍⟶𝐴 ∧ ∀𝑛 ∈ 𝑍 𝜒) ↔ ((𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)):𝑍⟶𝐴 ∧ ∀𝑛 ∈ 𝑍 [(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓))) |
249 | 233, 248 | spcev 3519 |
. 2
⊢ (((𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)):𝑍⟶𝐴 ∧ ∀𝑛 ∈ 𝑍 [(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓) → ∃𝑓(𝑓:𝑍⟶𝐴 ∧ ∀𝑛 ∈ 𝑍 𝜒)) |
250 | 221, 232,
249 | syl2anc 576 |
1
⊢ (𝜑 → ∃𝑓(𝑓:𝑍⟶𝐴 ∧ ∀𝑛 ∈ 𝑍 𝜒)) |