Step | Hyp | Ref
| Expression |
1 | | sdc.12 |
. . 3
⊢
Ⅎ𝑘𝜑 |
2 | | sdc.13 |
. . . . . . . 8
⊢ (𝜑 → 𝐺:𝑍⟶𝐽) |
3 | 2 | ffvelrnda 6904 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ 𝐽) |
4 | | sdc.10 |
. . . . . . . . 9
⊢ 𝐽 = {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} |
5 | 4 | eleq2i 2829 |
. . . . . . . 8
⊢ ((𝐺‘𝑘) ∈ 𝐽 ↔ (𝐺‘𝑘) ∈ {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)}) |
6 | | nfcv 2904 |
. . . . . . . . . 10
⊢
Ⅎ𝑔𝑍 |
7 | | nfv 1922 |
. . . . . . . . . . 11
⊢
Ⅎ𝑔(𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 |
8 | | nfsbc1v 3714 |
. . . . . . . . . . 11
⊢
Ⅎ𝑔[(𝐺‘𝑘) / 𝑔]𝜓 |
9 | 7, 8 | nfan 1907 |
. . . . . . . . . 10
⊢
Ⅎ𝑔((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓) |
10 | 6, 9 | nfrex 3228 |
. . . . . . . . 9
⊢
Ⅎ𝑔∃𝑛 ∈ 𝑍 ((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓) |
11 | | fvex 6730 |
. . . . . . . . 9
⊢ (𝐺‘𝑘) ∈ V |
12 | | feq1 6526 |
. . . . . . . . . . 11
⊢ (𝑔 = (𝐺‘𝑘) → (𝑔:(𝑀...𝑛)⟶𝐴 ↔ (𝐺‘𝑘):(𝑀...𝑛)⟶𝐴)) |
13 | | sbceq1a 3705 |
. . . . . . . . . . 11
⊢ (𝑔 = (𝐺‘𝑘) → (𝜓 ↔ [(𝐺‘𝑘) / 𝑔]𝜓)) |
14 | 12, 13 | anbi12d 634 |
. . . . . . . . . 10
⊢ (𝑔 = (𝐺‘𝑘) → ((𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓) ↔ ((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓))) |
15 | 14 | rexbidv 3216 |
. . . . . . . . 9
⊢ (𝑔 = (𝐺‘𝑘) → (∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓) ↔ ∃𝑛 ∈ 𝑍 ((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓))) |
16 | 10, 11, 15 | elabf 3584 |
. . . . . . . 8
⊢ ((𝐺‘𝑘) ∈ {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} ↔ ∃𝑛 ∈ 𝑍 ((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓)) |
17 | 5, 16 | bitri 278 |
. . . . . . 7
⊢ ((𝐺‘𝑘) ∈ 𝐽 ↔ ∃𝑛 ∈ 𝑍 ((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓)) |
18 | 3, 17 | sylib 221 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ∃𝑛 ∈ 𝑍 ((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓)) |
19 | | fdm 6554 |
. . . . . . . . . 10
⊢ ((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 → dom (𝐺‘𝑘) = (𝑀...𝑛)) |
20 | 19 | adantr 484 |
. . . . . . . . 9
⊢ (((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓) → dom (𝐺‘𝑘) = (𝑀...𝑛)) |
21 | | fveq2 6717 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑀 → (𝐺‘𝑥) = (𝐺‘𝑀)) |
22 | | oveq2 7221 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑀 → (𝑀...𝑥) = (𝑀...𝑀)) |
23 | 22 | mpteq1d 5144 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑀 → (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚))) |
24 | 21, 23 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑀 → ((𝐺‘𝑥) = (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚)) ↔ (𝐺‘𝑀) = (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚)))) |
25 | 24 | imbi2d 344 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑀 → ((𝜑 → (𝐺‘𝑥) = (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚))) ↔ (𝜑 → (𝐺‘𝑀) = (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚))))) |
26 | | fveq2 6717 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑤 → (𝐺‘𝑥) = (𝐺‘𝑤)) |
27 | | oveq2 7221 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑤 → (𝑀...𝑥) = (𝑀...𝑤)) |
28 | 27 | mpteq1d 5144 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑤 → (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚))) |
29 | 26, 28 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑤 → ((𝐺‘𝑥) = (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚)) ↔ (𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) |
30 | 29 | imbi2d 344 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑤 → ((𝜑 → (𝐺‘𝑥) = (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚))) ↔ (𝜑 → (𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚))))) |
31 | | fveq2 6717 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = (𝑤 + 1) → (𝐺‘𝑥) = (𝐺‘(𝑤 + 1))) |
32 | | oveq2 7221 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = (𝑤 + 1) → (𝑀...𝑥) = (𝑀...(𝑤 + 1))) |
33 | 32 | mpteq1d 5144 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = (𝑤 + 1) → (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))) |
34 | 31, 33 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = (𝑤 + 1) → ((𝐺‘𝑥) = (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚)) ↔ (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)))) |
35 | 34 | imbi2d 344 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝑤 + 1) → ((𝜑 → (𝐺‘𝑥) = (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚))) ↔ (𝜑 → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))))) |
36 | | fveq2 6717 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑘 → (𝐺‘𝑥) = (𝐺‘𝑘)) |
37 | | oveq2 7221 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑘 → (𝑀...𝑥) = (𝑀...𝑘)) |
38 | 37 | mpteq1d 5144 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑘 → (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚))) |
39 | 36, 38 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑘 → ((𝐺‘𝑥) = (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚)) ↔ (𝐺‘𝑘) = (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)))) |
40 | 39 | imbi2d 344 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑘 → ((𝜑 → (𝐺‘𝑥) = (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚))) ↔ (𝜑 → (𝐺‘𝑘) = (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚))))) |
41 | | fveq2 6717 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑚 = 𝑘 → (𝐺‘𝑚) = (𝐺‘𝑘)) |
42 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑚 = 𝑘 → 𝑚 = 𝑘) |
43 | 41, 42 | fveq12d 6724 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑚 = 𝑘 → ((𝐺‘𝑚)‘𝑚) = ((𝐺‘𝑘)‘𝑘)) |
44 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚)) |
45 | | fvex 6730 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐺‘𝑘)‘𝑘) ∈ V |
46 | 43, 44, 45 | fvmpt 6818 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ (𝑀...𝑀) → ((𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑘) = ((𝐺‘𝑘)‘𝑘)) |
47 | 46 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑀)) → ((𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑘) = ((𝐺‘𝑘)‘𝑘)) |
48 | | elfz1eq 13123 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ (𝑀...𝑀) → 𝑘 = 𝑀) |
49 | 48 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑀)) → 𝑘 = 𝑀) |
50 | 49 | fveq2d 6721 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑀)) → (𝐺‘𝑘) = (𝐺‘𝑀)) |
51 | 50 | fveq1d 6719 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑀)) → ((𝐺‘𝑘)‘𝑘) = ((𝐺‘𝑀)‘𝑘)) |
52 | 47, 51 | eqtr2d 2778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑀)) → ((𝐺‘𝑀)‘𝑘) = ((𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑘)) |
53 | 52 | ex 416 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑘 ∈ (𝑀...𝑀) → ((𝐺‘𝑀)‘𝑘) = ((𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑘))) |
54 | 1, 53 | ralrimi 3137 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑀)((𝐺‘𝑀)‘𝑘) = ((𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑘)) |
55 | | sdc.14 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐺‘𝑀):(𝑀...𝑀)⟶𝐴) |
56 | 55 | ffnd 6546 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝐺‘𝑀) Fn (𝑀...𝑀)) |
57 | | fvex 6730 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐺‘𝑚)‘𝑚) ∈ V |
58 | 57, 44 | fnmpti 6521 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚)) Fn (𝑀...𝑀) |
59 | | eqfnfv 6852 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐺‘𝑀) Fn (𝑀...𝑀) ∧ (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚)) Fn (𝑀...𝑀)) → ((𝐺‘𝑀) = (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚)) ↔ ∀𝑘 ∈ (𝑀...𝑀)((𝐺‘𝑀)‘𝑘) = ((𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑘))) |
60 | 56, 58, 59 | sylancl 589 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝐺‘𝑀) = (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚)) ↔ ∀𝑘 ∈ (𝑀...𝑀)((𝐺‘𝑀)‘𝑘) = ((𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑘))) |
61 | 54, 60 | mpbird 260 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐺‘𝑀) = (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚))) |
62 | 61 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 ∈ ℤ → (𝜑 → (𝐺‘𝑀) = (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚)))) |
63 | | sdc.1 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑍 =
(ℤ≥‘𝑀) |
64 | 63 | eleq2i 2829 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ 𝑍 ↔ 𝑤 ∈ (ℤ≥‘𝑀)) |
65 | 2 | ffvelrnda 6904 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝐺‘𝑤) ∈ 𝐽) |
66 | | simpr 488 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑤 ∈ 𝑍) |
67 | | 3simpa 1150 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎) → (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))) |
68 | 67 | reximi 3166 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(∃𝑘 ∈
𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎) → ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))) |
69 | 68 | ss2abi 3980 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ⊆ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} |
70 | 63 | fvexi 6731 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 𝑍 ∈ V |
71 | | nfv 1922 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
Ⅎ𝑘 𝑤 ∈ 𝑍 |
72 | 1, 71 | nfan 1907 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
Ⅎ𝑘(𝜑 ∧ 𝑤 ∈ 𝑍) |
73 | | sdc.6 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
74 | 73 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝐴 ∈ 𝑉) |
75 | | simpl 486 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘))) → ℎ:(𝑀...(𝑘 + 1))⟶𝐴) |
76 | | ovex 7246 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑀...(𝑘 + 1)) ∈ V |
77 | | elmapg 8521 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑀...(𝑘 + 1)) ∈ V) → (ℎ ∈ (𝐴 ↑m (𝑀...(𝑘 + 1))) ↔ ℎ:(𝑀...(𝑘 + 1))⟶𝐴)) |
78 | 76, 77 | mpan2 691 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝐴 ∈ 𝑉 → (ℎ ∈ (𝐴 ↑m (𝑀...(𝑘 + 1))) ↔ ℎ:(𝑀...(𝑘 + 1))⟶𝐴)) |
79 | 75, 78 | syl5ibr 249 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝐴 ∈ 𝑉 → ((ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘))) → ℎ ∈ (𝐴 ↑m (𝑀...(𝑘 + 1))))) |
80 | 79 | abssdv 3982 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝐴 ∈ 𝑉 → {ℎ ∣ (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ⊆ (𝐴 ↑m (𝑀...(𝑘 + 1)))) |
81 | 74, 80 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → {ℎ ∣ (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ⊆ (𝐴 ↑m (𝑀...(𝑘 + 1)))) |
82 | | ovex 7246 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝐴 ↑m (𝑀...(𝑘 + 1))) ∈ V |
83 | | ssexg 5216 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (({ℎ ∣ (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ⊆ (𝐴 ↑m (𝑀...(𝑘 + 1))) ∧ (𝐴 ↑m (𝑀...(𝑘 + 1))) ∈ V) → {ℎ ∣ (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ∈ V) |
84 | 81, 82, 83 | sylancl 589 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → {ℎ ∣ (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ∈ V) |
85 | 84 | a1d 25 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑘 ∈ 𝑍 → {ℎ ∣ (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ∈ V)) |
86 | 72, 85 | ralrimi 3137 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ∀𝑘 ∈ 𝑍 {ℎ ∣ (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ∈ V) |
87 | | abrexex2g 7737 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑍 ∈ V ∧ ∀𝑘 ∈ 𝑍 {ℎ ∣ (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ∈ V) → {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ∈ V) |
88 | 70, 86, 87 | sylancr 590 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ∈ V) |
89 | | ssexg 5216 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (({ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ⊆ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ∧ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ∈ V) → {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V) |
90 | 69, 88, 89 | sylancr 590 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V) |
91 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑥 = (𝐺‘𝑤) → (𝑥 = (ℎ ↾ (𝑀...𝑘)) ↔ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))) |
92 | 91 | 3anbi2d 1443 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥 = (𝐺‘𝑤) → ((ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎) ↔ (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎))) |
93 | 92 | rexbidv 3216 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑥 = (𝐺‘𝑤) → (∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎) ↔ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎))) |
94 | 93 | abbidv 2807 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥 = (𝐺‘𝑤) → {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) |
95 | 94 | eleq1d 2822 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑥 = (𝐺‘𝑤) → ({ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V ↔ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V)) |
96 | | oveq2 7221 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥 = (𝐺‘𝑤) → (𝑤𝐹𝑥) = (𝑤𝐹(𝐺‘𝑤))) |
97 | 96, 94 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑥 = (𝐺‘𝑤) → ((𝑤𝐹𝑥) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ↔ (𝑤𝐹(𝐺‘𝑤)) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)})) |
98 | 95, 97 | imbi12d 348 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 = (𝐺‘𝑤) → (({ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V → (𝑤𝐹𝑥) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) ↔ ({ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V → (𝑤𝐹(𝐺‘𝑤)) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}))) |
99 | 98 | imbi2d 344 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 = (𝐺‘𝑤) → ((𝑤 ∈ 𝑍 → ({ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V → (𝑤𝐹𝑥) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)})) ↔ (𝑤 ∈ 𝑍 → ({ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V → (𝑤𝐹(𝐺‘𝑤)) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)})))) |
100 | | sdc.11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ 𝐹 = (𝑤 ∈ 𝑍, 𝑥 ∈ 𝐽 ↦ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) |
101 | 100 | ovmpt4g 7356 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑤 ∈ 𝑍 ∧ 𝑥 ∈ 𝐽 ∧ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V) → (𝑤𝐹𝑥) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) |
102 | 101 | 3com12 1125 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑥 ∈ 𝐽 ∧ 𝑤 ∈ 𝑍 ∧ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V) → (𝑤𝐹𝑥) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) |
103 | 102 | 3exp 1121 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 ∈ 𝐽 → (𝑤 ∈ 𝑍 → ({ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V → (𝑤𝐹𝑥) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}))) |
104 | 99, 103 | vtoclga 3489 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐺‘𝑤) ∈ 𝐽 → (𝑤 ∈ 𝑍 → ({ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V → (𝑤𝐹(𝐺‘𝑤)) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}))) |
105 | 65, 66, 90, 104 | syl3c 66 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤𝐹(𝐺‘𝑤)) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) |
106 | 105, 69 | eqsstrdi 3955 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤𝐹(𝐺‘𝑤)) ⊆ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))}) |
107 | | sdc.15 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝐺‘(𝑤 + 1)) ∈ (𝑤𝐹(𝐺‘𝑤))) |
108 | 106, 107 | sseldd 3902 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝐺‘(𝑤 + 1)) ∈ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))}) |
109 | | fvex 6730 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐺‘(𝑤 + 1)) ∈ V |
110 | | feq1 6526 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (ℎ = (𝐺‘(𝑤 + 1)) → (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ↔ (𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴)) |
111 | | reseq1 5845 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (ℎ = (𝐺‘(𝑤 + 1)) → (ℎ ↾ (𝑀...𝑘)) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))) |
112 | 111 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (ℎ = (𝐺‘(𝑤 + 1)) → ((𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ↔ (𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)))) |
113 | 110, 112 | anbi12d 634 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (ℎ = (𝐺‘(𝑤 + 1)) → ((ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘))) ↔ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))))) |
114 | 113 | rexbidv 3216 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (ℎ = (𝐺‘(𝑤 + 1)) → (∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘))) ↔ ∃𝑘 ∈ 𝑍 ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))))) |
115 | 109, 114 | elab 3587 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐺‘(𝑤 + 1)) ∈ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ↔ ∃𝑘 ∈ 𝑍 ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)))) |
116 | 108, 115 | sylib 221 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ∃𝑘 ∈ 𝑍 ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)))) |
117 | | nfv 1922 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘((𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))) |
118 | | simprl 771 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴) |
119 | | fzssp1 13155 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑀...𝑘) ⊆ (𝑀...(𝑘 + 1)) |
120 | | fssres 6585 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝑀...𝑘) ⊆ (𝑀...(𝑘 + 1))) → ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)):(𝑀...𝑘)⟶𝐴) |
121 | 118, 119,
120 | sylancl 589 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)):(𝑀...𝑘)⟶𝐴) |
122 | 121 | fdmd 6556 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → dom ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑀...𝑘)) |
123 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) |
124 | 57, 123 | fnmpti 6521 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) Fn (𝑀...𝑤) |
125 | | simprr 773 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚))) |
126 | 125 | fneq1d 6472 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) Fn (𝑀...𝑤) ↔ (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) Fn (𝑀...𝑤))) |
127 | 124, 126 | mpbiri 261 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) Fn (𝑀...𝑤)) |
128 | 127 | fndmd 6483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → dom ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑀...𝑤)) |
129 | 122, 128 | eqtr3d 2779 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑀...𝑘) = (𝑀...𝑤)) |
130 | | simplr 769 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → 𝑘 ∈ 𝑍) |
131 | 130, 63 | eleqtrdi 2848 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → 𝑘 ∈ (ℤ≥‘𝑀)) |
132 | | fzopth 13149 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → ((𝑀...𝑘) = (𝑀...𝑤) ↔ (𝑀 = 𝑀 ∧ 𝑘 = 𝑤))) |
133 | 131, 132 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ((𝑀...𝑘) = (𝑀...𝑤) ↔ (𝑀 = 𝑀 ∧ 𝑘 = 𝑤))) |
134 | 129, 133 | mpbid 235 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑀 = 𝑀 ∧ 𝑘 = 𝑤)) |
135 | 134 | simprd 499 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → 𝑘 = 𝑤) |
136 | 135 | oveq1d 7228 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑘 + 1) = (𝑤 + 1)) |
137 | 136 | oveq2d 7229 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑀...(𝑘 + 1)) = (𝑀...(𝑤 + 1))) |
138 | | elfzp1 13162 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝑥 ∈ (𝑀...(𝑘 + 1)) ↔ (𝑥 ∈ (𝑀...𝑘) ∨ 𝑥 = (𝑘 + 1)))) |
139 | 131, 138 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑥 ∈ (𝑀...(𝑘 + 1)) ↔ (𝑥 ∈ (𝑀...𝑘) ∨ 𝑥 = (𝑘 + 1)))) |
140 | 129 | reseq2d 5851 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑘)) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑤))) |
141 | | fzssp1 13155 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑀...𝑤) ⊆ (𝑀...(𝑤 + 1)) |
142 | | resmpt 5905 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑀...𝑤) ⊆ (𝑀...(𝑤 + 1)) → ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑤)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚))) |
143 | 141, 142 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑤)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) |
144 | 140, 143 | eqtr2di 2795 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑘))) |
145 | 125, 144 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑘))) |
146 | 145 | fveq1d 6719 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))‘𝑥) = (((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑘))‘𝑥)) |
147 | | fvres 6736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑥 ∈ (𝑀...𝑘) → (((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))‘𝑥) = ((𝐺‘(𝑤 + 1))‘𝑥)) |
148 | | fvres 6736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑥 ∈ (𝑀...𝑘) → (((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑘))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥)) |
149 | 147, 148 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥 ∈ (𝑀...𝑘) → ((((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))‘𝑥) = (((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑘))‘𝑥) ↔ ((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥))) |
150 | 146, 149 | syl5ibcom 248 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑥 ∈ (𝑀...𝑘) → ((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥))) |
151 | 136 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑥 = (𝑘 + 1) ↔ 𝑥 = (𝑤 + 1))) |
152 | 135, 131 | eqeltrrd 2839 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → 𝑤 ∈ (ℤ≥‘𝑀)) |
153 | | peano2uz 12497 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑤 ∈
(ℤ≥‘𝑀) → (𝑤 + 1) ∈
(ℤ≥‘𝑀)) |
154 | | eluzfz2 13120 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑤 + 1) ∈
(ℤ≥‘𝑀) → (𝑤 + 1) ∈ (𝑀...(𝑤 + 1))) |
155 | | fveq2 6717 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑚 = (𝑤 + 1) → (𝐺‘𝑚) = (𝐺‘(𝑤 + 1))) |
156 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑚 = (𝑤 + 1) → 𝑚 = (𝑤 + 1)) |
157 | 155, 156 | fveq12d 6724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑚 = (𝑤 + 1) → ((𝐺‘𝑚)‘𝑚) = ((𝐺‘(𝑤 + 1))‘(𝑤 + 1))) |
158 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) |
159 | | fvex 6730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝐺‘(𝑤 + 1))‘(𝑤 + 1)) ∈ V |
160 | 157, 158,
159 | fvmpt 6818 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑤 + 1) ∈ (𝑀...(𝑤 + 1)) → ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘(𝑤 + 1)) = ((𝐺‘(𝑤 + 1))‘(𝑤 + 1))) |
161 | 152, 153,
154, 160 | 4syl 19 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘(𝑤 + 1)) = ((𝐺‘(𝑤 + 1))‘(𝑤 + 1))) |
162 | 161 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ((𝐺‘(𝑤 + 1))‘(𝑤 + 1)) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘(𝑤 + 1))) |
163 | | fveq2 6717 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑥 = (𝑤 + 1) → ((𝐺‘(𝑤 + 1))‘𝑥) = ((𝐺‘(𝑤 + 1))‘(𝑤 + 1))) |
164 | | fveq2 6717 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑥 = (𝑤 + 1) → ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘(𝑤 + 1))) |
165 | 163, 164 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑥 = (𝑤 + 1) → (((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥) ↔ ((𝐺‘(𝑤 + 1))‘(𝑤 + 1)) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘(𝑤 + 1)))) |
166 | 162, 165 | syl5ibrcom 250 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑥 = (𝑤 + 1) → ((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥))) |
167 | 151, 166 | sylbid 243 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑥 = (𝑘 + 1) → ((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥))) |
168 | 150, 167 | jaod 859 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ((𝑥 ∈ (𝑀...𝑘) ∨ 𝑥 = (𝑘 + 1)) → ((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥))) |
169 | 139, 168 | sylbid 243 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑥 ∈ (𝑀...(𝑘 + 1)) → ((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥))) |
170 | 169 | ralrimiv 3104 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ∀𝑥 ∈ (𝑀...(𝑘 + 1))((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥)) |
171 | | ffn 6545 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 → (𝐺‘(𝑤 + 1)) Fn (𝑀...(𝑘 + 1))) |
172 | 171 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝐺‘(𝑤 + 1)) Fn (𝑀...(𝑘 + 1))) |
173 | 57, 158 | fnmpti 6521 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) Fn (𝑀...(𝑤 + 1)) |
174 | | eqfnfv2 6853 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝐺‘(𝑤 + 1)) Fn (𝑀...(𝑘 + 1)) ∧ (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) Fn (𝑀...(𝑤 + 1))) → ((𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↔ ((𝑀...(𝑘 + 1)) = (𝑀...(𝑤 + 1)) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥)))) |
175 | 172, 173,
174 | sylancl 589 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ((𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↔ ((𝑀...(𝑘 + 1)) = (𝑀...(𝑤 + 1)) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥)))) |
176 | 137, 170,
175 | mpbir2and 713 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))) |
177 | 176 | expr 460 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ (𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴) → (((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)))) |
178 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) → ((𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) ↔ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) |
179 | 178 | imbi1d 345 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) → (((𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))) ↔ (((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))))) |
180 | 177, 179 | syl5ibrcom 250 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ (𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴) → ((𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) → ((𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))))) |
181 | 180 | expimpd 457 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) → (((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))) → ((𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))))) |
182 | 181 | ex 416 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑘 ∈ 𝑍 → (((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))) → ((𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)))))) |
183 | 72, 117, 182 | rexlimd 3236 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (∃𝑘 ∈ 𝑍 ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))) → ((𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))))) |
184 | 116, 183 | mpd 15 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ((𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)))) |
185 | 184 | expcom 417 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ 𝑍 → (𝜑 → ((𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))))) |
186 | 64, 185 | sylbir 238 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈
(ℤ≥‘𝑀) → (𝜑 → ((𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))))) |
187 | 186 | a2d 29 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 ∈
(ℤ≥‘𝑀) → ((𝜑 → (𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚))) → (𝜑 → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))))) |
188 | 25, 30, 35, 40, 62, 187 | uzind4 12502 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝜑 → (𝐺‘𝑘) = (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)))) |
189 | 188, 63 | eleq2s 2856 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ 𝑍 → (𝜑 → (𝐺‘𝑘) = (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)))) |
190 | 189 | impcom 411 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚))) |
191 | 190 | dmeqd 5774 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → dom (𝐺‘𝑘) = dom (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚))) |
192 | | dmmptg 6105 |
. . . . . . . . . . . . . 14
⊢
(∀𝑚 ∈
(𝑀...𝑘)((𝐺‘𝑚)‘𝑚) ∈ V → dom (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑀...𝑘)) |
193 | 57 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ (𝑀...𝑘) → ((𝐺‘𝑚)‘𝑚) ∈ V) |
194 | 192, 193 | mprg 3075 |
. . . . . . . . . . . . 13
⊢ dom
(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑀...𝑘) |
195 | 191, 194 | eqtrdi 2794 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → dom (𝐺‘𝑘) = (𝑀...𝑘)) |
196 | 195 | eqeq1d 2739 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (dom (𝐺‘𝑘) = (𝑀...𝑛) ↔ (𝑀...𝑘) = (𝑀...𝑛))) |
197 | | simpr 488 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) |
198 | 197, 63 | eleqtrdi 2848 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ (ℤ≥‘𝑀)) |
199 | | fzopth 13149 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → ((𝑀...𝑘) = (𝑀...𝑛) ↔ (𝑀 = 𝑀 ∧ 𝑘 = 𝑛))) |
200 | 198, 199 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑀...𝑘) = (𝑀...𝑛) ↔ (𝑀 = 𝑀 ∧ 𝑘 = 𝑛))) |
201 | 196, 200 | bitrd 282 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (dom (𝐺‘𝑘) = (𝑀...𝑛) ↔ (𝑀 = 𝑀 ∧ 𝑘 = 𝑛))) |
202 | | simpr 488 |
. . . . . . . . . 10
⊢ ((𝑀 = 𝑀 ∧ 𝑘 = 𝑛) → 𝑘 = 𝑛) |
203 | 201, 202 | syl6bi 256 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (dom (𝐺‘𝑘) = (𝑀...𝑛) → 𝑘 = 𝑛)) |
204 | 20, 203 | syl5 34 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓) → 𝑘 = 𝑛)) |
205 | | oveq2 7221 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (𝑀...𝑛) = (𝑀...𝑘)) |
206 | 205 | feq2d 6531 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → ((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ↔ (𝐺‘𝑘):(𝑀...𝑘)⟶𝐴)) |
207 | | sdc.4 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (𝜓 ↔ 𝜃)) |
208 | 207 | sbcbidv 3753 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → ([(𝐺‘𝑘) / 𝑔]𝜓 ↔ [(𝐺‘𝑘) / 𝑔]𝜃)) |
209 | 206, 208 | anbi12d 634 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → (((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓) ↔ ((𝐺‘𝑘):(𝑀...𝑘)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜃))) |
210 | 209 | equcoms 2028 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → (((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓) ↔ ((𝐺‘𝑘):(𝑀...𝑘)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜃))) |
211 | 210 | biimpcd 252 |
. . . . . . . 8
⊢ (((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓) → (𝑘 = 𝑛 → ((𝐺‘𝑘):(𝑀...𝑘)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜃))) |
212 | 204, 211 | sylcom 30 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓) → ((𝐺‘𝑘):(𝑀...𝑘)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜃))) |
213 | 212 | rexlimdvw 3209 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (∃𝑛 ∈ 𝑍 ((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓) → ((𝐺‘𝑘):(𝑀...𝑘)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜃))) |
214 | 18, 213 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐺‘𝑘):(𝑀...𝑘)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜃)) |
215 | 214 | simpld 498 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘):(𝑀...𝑘)⟶𝐴) |
216 | | eluzfz2 13120 |
. . . . 5
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑘 ∈ (𝑀...𝑘)) |
217 | 198, 216 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ (𝑀...𝑘)) |
218 | 215, 217 | ffvelrnd 6905 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐺‘𝑘)‘𝑘) ∈ 𝐴) |
219 | 43 | cbvmptv 5158 |
. . 3
⊢ (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑘 ∈ 𝑍 ↦ ((𝐺‘𝑘)‘𝑘)) |
220 | 1, 218, 219 | fmptdf 6934 |
. 2
⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)):𝑍⟶𝐴) |
221 | 214 | simprd 499 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → [(𝐺‘𝑘) / 𝑔]𝜃) |
222 | 190, 221 | sbceq1dd 3700 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → [(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜃) |
223 | 222 | ex 416 |
. . . 4
⊢ (𝜑 → (𝑘 ∈ 𝑍 → [(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜃)) |
224 | 1, 223 | ralrimi 3137 |
. . 3
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 [(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜃) |
225 | | mpteq1 5143 |
. . . . . 6
⊢ ((𝑀...𝑛) = (𝑀...𝑘) → (𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚))) |
226 | | dfsbcq 3696 |
. . . . . 6
⊢ ((𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) → ([(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓 ↔ [(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓)) |
227 | 205, 225,
226 | 3syl 18 |
. . . . 5
⊢ (𝑛 = 𝑘 → ([(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓 ↔ [(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓)) |
228 | 207 | sbcbidv 3753 |
. . . . 5
⊢ (𝑛 = 𝑘 → ([(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓 ↔ [(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜃)) |
229 | 227, 228 | bitrd 282 |
. . . 4
⊢ (𝑛 = 𝑘 → ([(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓 ↔ [(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜃)) |
230 | 229 | cbvralvw 3358 |
. . 3
⊢
(∀𝑛 ∈
𝑍 [(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓 ↔ ∀𝑘 ∈ 𝑍 [(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜃) |
231 | 224, 230 | sylibr 237 |
. 2
⊢ (𝜑 → ∀𝑛 ∈ 𝑍 [(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓) |
232 | 70 | mptex 7039 |
. . 3
⊢ (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) ∈ V |
233 | | feq1 6526 |
. . . 4
⊢ (𝑓 = (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) → (𝑓:𝑍⟶𝐴 ↔ (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)):𝑍⟶𝐴)) |
234 | | vex 3412 |
. . . . . . . 8
⊢ 𝑓 ∈ V |
235 | 234 | resex 5899 |
. . . . . . 7
⊢ (𝑓 ↾ (𝑀...𝑛)) ∈ V |
236 | | sdc.2 |
. . . . . . 7
⊢ (𝑔 = (𝑓 ↾ (𝑀...𝑛)) → (𝜓 ↔ 𝜒)) |
237 | 235, 236 | sbcie 3737 |
. . . . . 6
⊢
([(𝑓 ↾
(𝑀...𝑛)) / 𝑔]𝜓 ↔ 𝜒) |
238 | | reseq1 5845 |
. . . . . . . 8
⊢ (𝑓 = (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) → (𝑓 ↾ (𝑀...𝑛)) = ((𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑛))) |
239 | | fzssuz 13153 |
. . . . . . . . . 10
⊢ (𝑀...𝑛) ⊆ (ℤ≥‘𝑀) |
240 | 239, 63 | sseqtrri 3938 |
. . . . . . . . 9
⊢ (𝑀...𝑛) ⊆ 𝑍 |
241 | | resmpt 5905 |
. . . . . . . . 9
⊢ ((𝑀...𝑛) ⊆ 𝑍 → ((𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑛)) = (𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚))) |
242 | 240, 241 | ax-mp 5 |
. . . . . . . 8
⊢ ((𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑛)) = (𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) |
243 | 238, 242 | eqtrdi 2794 |
. . . . . . 7
⊢ (𝑓 = (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) → (𝑓 ↾ (𝑀...𝑛)) = (𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚))) |
244 | 243 | sbceq1d 3699 |
. . . . . 6
⊢ (𝑓 = (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) → ([(𝑓 ↾ (𝑀...𝑛)) / 𝑔]𝜓 ↔ [(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓)) |
245 | 237, 244 | bitr3id 288 |
. . . . 5
⊢ (𝑓 = (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) → (𝜒 ↔ [(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓)) |
246 | 245 | ralbidv 3118 |
. . . 4
⊢ (𝑓 = (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) → (∀𝑛 ∈ 𝑍 𝜒 ↔ ∀𝑛 ∈ 𝑍 [(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓)) |
247 | 233, 246 | anbi12d 634 |
. . 3
⊢ (𝑓 = (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) → ((𝑓:𝑍⟶𝐴 ∧ ∀𝑛 ∈ 𝑍 𝜒) ↔ ((𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)):𝑍⟶𝐴 ∧ ∀𝑛 ∈ 𝑍 [(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓))) |
248 | 232, 247 | spcev 3521 |
. 2
⊢ (((𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)):𝑍⟶𝐴 ∧ ∀𝑛 ∈ 𝑍 [(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓) → ∃𝑓(𝑓:𝑍⟶𝐴 ∧ ∀𝑛 ∈ 𝑍 𝜒)) |
249 | 220, 231,
248 | syl2anc 587 |
1
⊢ (𝜑 → ∃𝑓(𝑓:𝑍⟶𝐴 ∧ ∀𝑛 ∈ 𝑍 𝜒)) |