| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | sdc.12 | . . 3
⊢
Ⅎ𝑘𝜑 | 
| 2 |  | sdc.13 | . . . . . . . 8
⊢ (𝜑 → 𝐺:𝑍⟶𝐽) | 
| 3 | 2 | ffvelcdmda 7103 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ 𝐽) | 
| 4 |  | sdc.10 | . . . . . . . . 9
⊢ 𝐽 = {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} | 
| 5 | 4 | eleq2i 2832 | . . . . . . . 8
⊢ ((𝐺‘𝑘) ∈ 𝐽 ↔ (𝐺‘𝑘) ∈ {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)}) | 
| 6 |  | nfcv 2904 | . . . . . . . . . 10
⊢
Ⅎ𝑔𝑍 | 
| 7 |  | nfv 1913 | . . . . . . . . . . 11
⊢
Ⅎ𝑔(𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 | 
| 8 |  | nfsbc1v 3807 | . . . . . . . . . . 11
⊢
Ⅎ𝑔[(𝐺‘𝑘) / 𝑔]𝜓 | 
| 9 | 7, 8 | nfan 1898 | . . . . . . . . . 10
⊢
Ⅎ𝑔((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓) | 
| 10 | 6, 9 | nfrexw 3312 | . . . . . . . . 9
⊢
Ⅎ𝑔∃𝑛 ∈ 𝑍 ((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓) | 
| 11 |  | fvex 6918 | . . . . . . . . 9
⊢ (𝐺‘𝑘) ∈ V | 
| 12 |  | feq1 6715 | . . . . . . . . . . 11
⊢ (𝑔 = (𝐺‘𝑘) → (𝑔:(𝑀...𝑛)⟶𝐴 ↔ (𝐺‘𝑘):(𝑀...𝑛)⟶𝐴)) | 
| 13 |  | sbceq1a 3798 | . . . . . . . . . . 11
⊢ (𝑔 = (𝐺‘𝑘) → (𝜓 ↔ [(𝐺‘𝑘) / 𝑔]𝜓)) | 
| 14 | 12, 13 | anbi12d 632 | . . . . . . . . . 10
⊢ (𝑔 = (𝐺‘𝑘) → ((𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓) ↔ ((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓))) | 
| 15 | 14 | rexbidv 3178 | . . . . . . . . 9
⊢ (𝑔 = (𝐺‘𝑘) → (∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓) ↔ ∃𝑛 ∈ 𝑍 ((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓))) | 
| 16 | 10, 11, 15 | elabf 3674 | . . . . . . . 8
⊢ ((𝐺‘𝑘) ∈ {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} ↔ ∃𝑛 ∈ 𝑍 ((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓)) | 
| 17 | 5, 16 | bitri 275 | . . . . . . 7
⊢ ((𝐺‘𝑘) ∈ 𝐽 ↔ ∃𝑛 ∈ 𝑍 ((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓)) | 
| 18 | 3, 17 | sylib 218 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ∃𝑛 ∈ 𝑍 ((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓)) | 
| 19 |  | fdm 6744 | . . . . . . . . . 10
⊢ ((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 → dom (𝐺‘𝑘) = (𝑀...𝑛)) | 
| 20 | 19 | adantr 480 | . . . . . . . . 9
⊢ (((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓) → dom (𝐺‘𝑘) = (𝑀...𝑛)) | 
| 21 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑀 → (𝐺‘𝑥) = (𝐺‘𝑀)) | 
| 22 |  | oveq2 7440 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑀 → (𝑀...𝑥) = (𝑀...𝑀)) | 
| 23 | 22 | mpteq1d 5236 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑀 → (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚))) | 
| 24 | 21, 23 | eqeq12d 2752 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑀 → ((𝐺‘𝑥) = (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚)) ↔ (𝐺‘𝑀) = (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚)))) | 
| 25 | 24 | imbi2d 340 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑀 → ((𝜑 → (𝐺‘𝑥) = (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚))) ↔ (𝜑 → (𝐺‘𝑀) = (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚))))) | 
| 26 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑤 → (𝐺‘𝑥) = (𝐺‘𝑤)) | 
| 27 |  | oveq2 7440 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑤 → (𝑀...𝑥) = (𝑀...𝑤)) | 
| 28 | 27 | mpteq1d 5236 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑤 → (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚))) | 
| 29 | 26, 28 | eqeq12d 2752 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑤 → ((𝐺‘𝑥) = (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚)) ↔ (𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) | 
| 30 | 29 | imbi2d 340 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑤 → ((𝜑 → (𝐺‘𝑥) = (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚))) ↔ (𝜑 → (𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚))))) | 
| 31 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = (𝑤 + 1) → (𝐺‘𝑥) = (𝐺‘(𝑤 + 1))) | 
| 32 |  | oveq2 7440 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = (𝑤 + 1) → (𝑀...𝑥) = (𝑀...(𝑤 + 1))) | 
| 33 | 32 | mpteq1d 5236 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = (𝑤 + 1) → (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))) | 
| 34 | 31, 33 | eqeq12d 2752 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = (𝑤 + 1) → ((𝐺‘𝑥) = (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚)) ↔ (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)))) | 
| 35 | 34 | imbi2d 340 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝑤 + 1) → ((𝜑 → (𝐺‘𝑥) = (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚))) ↔ (𝜑 → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))))) | 
| 36 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑘 → (𝐺‘𝑥) = (𝐺‘𝑘)) | 
| 37 |  | oveq2 7440 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑘 → (𝑀...𝑥) = (𝑀...𝑘)) | 
| 38 | 37 | mpteq1d 5236 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑘 → (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚))) | 
| 39 | 36, 38 | eqeq12d 2752 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑘 → ((𝐺‘𝑥) = (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚)) ↔ (𝐺‘𝑘) = (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)))) | 
| 40 | 39 | imbi2d 340 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑘 → ((𝜑 → (𝐺‘𝑥) = (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺‘𝑚)‘𝑚))) ↔ (𝜑 → (𝐺‘𝑘) = (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚))))) | 
| 41 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑚 = 𝑘 → (𝐺‘𝑚) = (𝐺‘𝑘)) | 
| 42 |  | id 22 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑚 = 𝑘 → 𝑚 = 𝑘) | 
| 43 | 41, 42 | fveq12d 6912 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑚 = 𝑘 → ((𝐺‘𝑚)‘𝑚) = ((𝐺‘𝑘)‘𝑘)) | 
| 44 |  | eqid 2736 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚)) | 
| 45 |  | fvex 6918 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐺‘𝑘)‘𝑘) ∈ V | 
| 46 | 43, 44, 45 | fvmpt 7015 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ (𝑀...𝑀) → ((𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑘) = ((𝐺‘𝑘)‘𝑘)) | 
| 47 | 46 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑀)) → ((𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑘) = ((𝐺‘𝑘)‘𝑘)) | 
| 48 |  | elfz1eq 13576 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ (𝑀...𝑀) → 𝑘 = 𝑀) | 
| 49 | 48 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑀)) → 𝑘 = 𝑀) | 
| 50 | 49 | fveq2d 6909 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑀)) → (𝐺‘𝑘) = (𝐺‘𝑀)) | 
| 51 | 50 | fveq1d 6907 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑀)) → ((𝐺‘𝑘)‘𝑘) = ((𝐺‘𝑀)‘𝑘)) | 
| 52 | 47, 51 | eqtr2d 2777 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑀)) → ((𝐺‘𝑀)‘𝑘) = ((𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑘)) | 
| 53 | 52 | ex 412 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑘 ∈ (𝑀...𝑀) → ((𝐺‘𝑀)‘𝑘) = ((𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑘))) | 
| 54 | 1, 53 | ralrimi 3256 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑀)((𝐺‘𝑀)‘𝑘) = ((𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑘)) | 
| 55 |  | sdc.14 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐺‘𝑀):(𝑀...𝑀)⟶𝐴) | 
| 56 | 55 | ffnd 6736 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝐺‘𝑀) Fn (𝑀...𝑀)) | 
| 57 |  | fvex 6918 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐺‘𝑚)‘𝑚) ∈ V | 
| 58 | 57, 44 | fnmpti 6710 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚)) Fn (𝑀...𝑀) | 
| 59 |  | eqfnfv 7050 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐺‘𝑀) Fn (𝑀...𝑀) ∧ (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚)) Fn (𝑀...𝑀)) → ((𝐺‘𝑀) = (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚)) ↔ ∀𝑘 ∈ (𝑀...𝑀)((𝐺‘𝑀)‘𝑘) = ((𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑘))) | 
| 60 | 56, 58, 59 | sylancl 586 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝐺‘𝑀) = (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚)) ↔ ∀𝑘 ∈ (𝑀...𝑀)((𝐺‘𝑀)‘𝑘) = ((𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑘))) | 
| 61 | 54, 60 | mpbird 257 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐺‘𝑀) = (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚))) | 
| 62 | 61 | a1i 11 | . . . . . . . . . . . . . . . . 17
⊢ (𝑀 ∈ ℤ → (𝜑 → (𝐺‘𝑀) = (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺‘𝑚)‘𝑚)))) | 
| 63 |  | sdc.1 | . . . . . . . . . . . . . . . . . . . 20
⊢ 𝑍 =
(ℤ≥‘𝑀) | 
| 64 | 63 | eleq2i 2832 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ 𝑍 ↔ 𝑤 ∈ (ℤ≥‘𝑀)) | 
| 65 | 2 | ffvelcdmda 7103 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝐺‘𝑤) ∈ 𝐽) | 
| 66 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑤 ∈ 𝑍) | 
| 67 |  | 3simpa 1148 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎) → (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))) | 
| 68 | 67 | reximi 3083 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(∃𝑘 ∈
𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎) → ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))) | 
| 69 | 68 | ss2abi 4066 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ⊆ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} | 
| 70 | 63 | fvexi 6919 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 𝑍 ∈ V | 
| 71 |  | nfv 1913 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
Ⅎ𝑘 𝑤 ∈ 𝑍 | 
| 72 | 1, 71 | nfan 1898 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
Ⅎ𝑘(𝜑 ∧ 𝑤 ∈ 𝑍) | 
| 73 |  | sdc.6 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| 74 | 73 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝐴 ∈ 𝑉) | 
| 75 |  | simpl 482 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘))) → ℎ:(𝑀...(𝑘 + 1))⟶𝐴) | 
| 76 |  | ovex 7465 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑀...(𝑘 + 1)) ∈ V | 
| 77 |  | elmapg 8880 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑀...(𝑘 + 1)) ∈ V) → (ℎ ∈ (𝐴 ↑m (𝑀...(𝑘 + 1))) ↔ ℎ:(𝑀...(𝑘 + 1))⟶𝐴)) | 
| 78 | 76, 77 | mpan2 691 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝐴 ∈ 𝑉 → (ℎ ∈ (𝐴 ↑m (𝑀...(𝑘 + 1))) ↔ ℎ:(𝑀...(𝑘 + 1))⟶𝐴)) | 
| 79 | 75, 78 | imbitrrid 246 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝐴 ∈ 𝑉 → ((ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘))) → ℎ ∈ (𝐴 ↑m (𝑀...(𝑘 + 1))))) | 
| 80 | 79 | abssdv 4067 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝐴 ∈ 𝑉 → {ℎ ∣ (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ⊆ (𝐴 ↑m (𝑀...(𝑘 + 1)))) | 
| 81 | 74, 80 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → {ℎ ∣ (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ⊆ (𝐴 ↑m (𝑀...(𝑘 + 1)))) | 
| 82 |  | ovex 7465 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝐴 ↑m (𝑀...(𝑘 + 1))) ∈ V | 
| 83 |  | ssexg 5322 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (({ℎ ∣ (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ⊆ (𝐴 ↑m (𝑀...(𝑘 + 1))) ∧ (𝐴 ↑m (𝑀...(𝑘 + 1))) ∈ V) → {ℎ ∣ (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ∈ V) | 
| 84 | 81, 82, 83 | sylancl 586 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → {ℎ ∣ (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ∈ V) | 
| 85 | 84 | a1d 25 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑘 ∈ 𝑍 → {ℎ ∣ (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ∈ V)) | 
| 86 | 72, 85 | ralrimi 3256 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ∀𝑘 ∈ 𝑍 {ℎ ∣ (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ∈ V) | 
| 87 |  | abrexex2g 7990 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑍 ∈ V ∧ ∀𝑘 ∈ 𝑍 {ℎ ∣ (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ∈ V) → {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ∈ V) | 
| 88 | 70, 86, 87 | sylancr 587 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ∈ V) | 
| 89 |  | ssexg 5322 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (({ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ⊆ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ∧ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ∈ V) → {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V) | 
| 90 | 69, 88, 89 | sylancr 587 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V) | 
| 91 |  | eqeq1 2740 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑥 = (𝐺‘𝑤) → (𝑥 = (ℎ ↾ (𝑀...𝑘)) ↔ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))) | 
| 92 | 91 | 3anbi2d 1442 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥 = (𝐺‘𝑤) → ((ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎) ↔ (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎))) | 
| 93 | 92 | rexbidv 3178 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑥 = (𝐺‘𝑤) → (∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎) ↔ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎))) | 
| 94 | 93 | abbidv 2807 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥 = (𝐺‘𝑤) → {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) | 
| 95 | 94 | eleq1d 2825 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑥 = (𝐺‘𝑤) → ({ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V ↔ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V)) | 
| 96 |  | oveq2 7440 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥 = (𝐺‘𝑤) → (𝑤𝐹𝑥) = (𝑤𝐹(𝐺‘𝑤))) | 
| 97 | 96, 94 | eqeq12d 2752 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑥 = (𝐺‘𝑤) → ((𝑤𝐹𝑥) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ↔ (𝑤𝐹(𝐺‘𝑤)) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)})) | 
| 98 | 95, 97 | imbi12d 344 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 = (𝐺‘𝑤) → (({ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V → (𝑤𝐹𝑥) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) ↔ ({ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V → (𝑤𝐹(𝐺‘𝑤)) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}))) | 
| 99 | 98 | imbi2d 340 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 = (𝐺‘𝑤) → ((𝑤 ∈ 𝑍 → ({ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V → (𝑤𝐹𝑥) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)})) ↔ (𝑤 ∈ 𝑍 → ({ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V → (𝑤𝐹(𝐺‘𝑤)) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)})))) | 
| 100 |  | sdc.11 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ 𝐹 = (𝑤 ∈ 𝑍, 𝑥 ∈ 𝐽 ↦ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) | 
| 101 | 100 | ovmpt4g 7581 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑤 ∈ 𝑍 ∧ 𝑥 ∈ 𝐽 ∧ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V) → (𝑤𝐹𝑥) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) | 
| 102 | 101 | 3com12 1123 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑥 ∈ 𝐽 ∧ 𝑤 ∈ 𝑍 ∧ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V) → (𝑤𝐹𝑥) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) | 
| 103 | 102 | 3exp 1119 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 ∈ 𝐽 → (𝑤 ∈ 𝑍 → ({ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V → (𝑤𝐹𝑥) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}))) | 
| 104 | 99, 103 | vtoclga 3576 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐺‘𝑤) ∈ 𝐽 → (𝑤 ∈ 𝑍 → ({ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V → (𝑤𝐹(𝐺‘𝑤)) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}))) | 
| 105 | 65, 66, 90, 104 | syl3c 66 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤𝐹(𝐺‘𝑤)) = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) | 
| 106 | 105, 69 | eqsstrdi 4027 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤𝐹(𝐺‘𝑤)) ⊆ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))}) | 
| 107 |  | sdc.15 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝐺‘(𝑤 + 1)) ∈ (𝑤𝐹(𝐺‘𝑤))) | 
| 108 | 106, 107 | sseldd 3983 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝐺‘(𝑤 + 1)) ∈ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))}) | 
| 109 |  | fvex 6918 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐺‘(𝑤 + 1)) ∈ V | 
| 110 |  | feq1 6715 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (ℎ = (𝐺‘(𝑤 + 1)) → (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ↔ (𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴)) | 
| 111 |  | reseq1 5990 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (ℎ = (𝐺‘(𝑤 + 1)) → (ℎ ↾ (𝑀...𝑘)) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))) | 
| 112 | 111 | eqeq2d 2747 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (ℎ = (𝐺‘(𝑤 + 1)) → ((𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)) ↔ (𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)))) | 
| 113 | 110, 112 | anbi12d 632 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (ℎ = (𝐺‘(𝑤 + 1)) → ((ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘))) ↔ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))))) | 
| 114 | 113 | rexbidv 3178 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (ℎ = (𝐺‘(𝑤 + 1)) → (∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘))) ↔ ∃𝑘 ∈ 𝑍 ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))))) | 
| 115 | 109, 114 | elab 3678 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐺‘(𝑤 + 1)) ∈ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = (ℎ ↾ (𝑀...𝑘)))} ↔ ∃𝑘 ∈ 𝑍 ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)))) | 
| 116 | 108, 115 | sylib 218 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ∃𝑘 ∈ 𝑍 ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)))) | 
| 117 |  | nfv 1913 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘((𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))) | 
| 118 |  | simprl 770 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴) | 
| 119 |  | fzssp1 13608 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑀...𝑘) ⊆ (𝑀...(𝑘 + 1)) | 
| 120 |  | fssres 6773 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝑀...𝑘) ⊆ (𝑀...(𝑘 + 1))) → ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)):(𝑀...𝑘)⟶𝐴) | 
| 121 | 118, 119,
120 | sylancl 586 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)):(𝑀...𝑘)⟶𝐴) | 
| 122 | 121 | fdmd 6745 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → dom ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑀...𝑘)) | 
| 123 |  | eqid 2736 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) | 
| 124 | 57, 123 | fnmpti 6710 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) Fn (𝑀...𝑤) | 
| 125 |  | simprr 772 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚))) | 
| 126 | 125 | fneq1d 6660 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) Fn (𝑀...𝑤) ↔ (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) Fn (𝑀...𝑤))) | 
| 127 | 124, 126 | mpbiri 258 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) Fn (𝑀...𝑤)) | 
| 128 | 127 | fndmd 6672 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → dom ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑀...𝑤)) | 
| 129 | 122, 128 | eqtr3d 2778 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑀...𝑘) = (𝑀...𝑤)) | 
| 130 |  | simplr 768 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → 𝑘 ∈ 𝑍) | 
| 131 | 130, 63 | eleqtrdi 2850 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → 𝑘 ∈ (ℤ≥‘𝑀)) | 
| 132 |  | fzopth 13602 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → ((𝑀...𝑘) = (𝑀...𝑤) ↔ (𝑀 = 𝑀 ∧ 𝑘 = 𝑤))) | 
| 133 | 131, 132 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ((𝑀...𝑘) = (𝑀...𝑤) ↔ (𝑀 = 𝑀 ∧ 𝑘 = 𝑤))) | 
| 134 | 129, 133 | mpbid 232 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑀 = 𝑀 ∧ 𝑘 = 𝑤)) | 
| 135 | 134 | simprd 495 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → 𝑘 = 𝑤) | 
| 136 | 135 | oveq1d 7447 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑘 + 1) = (𝑤 + 1)) | 
| 137 | 136 | oveq2d 7448 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑀...(𝑘 + 1)) = (𝑀...(𝑤 + 1))) | 
| 138 |  | elfzp1 13615 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝑥 ∈ (𝑀...(𝑘 + 1)) ↔ (𝑥 ∈ (𝑀...𝑘) ∨ 𝑥 = (𝑘 + 1)))) | 
| 139 | 131, 138 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑥 ∈ (𝑀...(𝑘 + 1)) ↔ (𝑥 ∈ (𝑀...𝑘) ∨ 𝑥 = (𝑘 + 1)))) | 
| 140 | 129 | reseq2d 5996 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑘)) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑤))) | 
| 141 |  | fzssp1 13608 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑀...𝑤) ⊆ (𝑀...(𝑤 + 1)) | 
| 142 |  | resmpt 6054 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑀...𝑤) ⊆ (𝑀...(𝑤 + 1)) → ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑤)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚))) | 
| 143 | 141, 142 | ax-mp 5 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑤)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) | 
| 144 | 140, 143 | eqtr2di 2793 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑘))) | 
| 145 | 125, 144 | eqtrd 2776 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑘))) | 
| 146 | 145 | fveq1d 6907 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))‘𝑥) = (((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑘))‘𝑥)) | 
| 147 |  | fvres 6924 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑥 ∈ (𝑀...𝑘) → (((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))‘𝑥) = ((𝐺‘(𝑤 + 1))‘𝑥)) | 
| 148 |  | fvres 6924 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑥 ∈ (𝑀...𝑘) → (((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑘))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥)) | 
| 149 | 147, 148 | eqeq12d 2752 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥 ∈ (𝑀...𝑘) → ((((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))‘𝑥) = (((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑘))‘𝑥) ↔ ((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥))) | 
| 150 | 146, 149 | syl5ibcom 245 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑥 ∈ (𝑀...𝑘) → ((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥))) | 
| 151 | 136 | eqeq2d 2747 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑥 = (𝑘 + 1) ↔ 𝑥 = (𝑤 + 1))) | 
| 152 | 135, 131 | eqeltrrd 2841 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → 𝑤 ∈ (ℤ≥‘𝑀)) | 
| 153 |  | peano2uz 12944 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑤 ∈
(ℤ≥‘𝑀) → (𝑤 + 1) ∈
(ℤ≥‘𝑀)) | 
| 154 |  | eluzfz2 13573 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑤 + 1) ∈
(ℤ≥‘𝑀) → (𝑤 + 1) ∈ (𝑀...(𝑤 + 1))) | 
| 155 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑚 = (𝑤 + 1) → (𝐺‘𝑚) = (𝐺‘(𝑤 + 1))) | 
| 156 |  | id 22 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑚 = (𝑤 + 1) → 𝑚 = (𝑤 + 1)) | 
| 157 | 155, 156 | fveq12d 6912 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑚 = (𝑤 + 1) → ((𝐺‘𝑚)‘𝑚) = ((𝐺‘(𝑤 + 1))‘(𝑤 + 1))) | 
| 158 |  | eqid 2736 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) | 
| 159 |  | fvex 6918 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝐺‘(𝑤 + 1))‘(𝑤 + 1)) ∈ V | 
| 160 | 157, 158,
159 | fvmpt 7015 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑤 + 1) ∈ (𝑀...(𝑤 + 1)) → ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘(𝑤 + 1)) = ((𝐺‘(𝑤 + 1))‘(𝑤 + 1))) | 
| 161 | 152, 153,
154, 160 | 4syl 19 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘(𝑤 + 1)) = ((𝐺‘(𝑤 + 1))‘(𝑤 + 1))) | 
| 162 | 161 | eqcomd 2742 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ((𝐺‘(𝑤 + 1))‘(𝑤 + 1)) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘(𝑤 + 1))) | 
| 163 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑥 = (𝑤 + 1) → ((𝐺‘(𝑤 + 1))‘𝑥) = ((𝐺‘(𝑤 + 1))‘(𝑤 + 1))) | 
| 164 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑥 = (𝑤 + 1) → ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘(𝑤 + 1))) | 
| 165 | 163, 164 | eqeq12d 2752 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑥 = (𝑤 + 1) → (((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥) ↔ ((𝐺‘(𝑤 + 1))‘(𝑤 + 1)) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘(𝑤 + 1)))) | 
| 166 | 162, 165 | syl5ibrcom 247 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑥 = (𝑤 + 1) → ((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥))) | 
| 167 | 151, 166 | sylbid 240 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑥 = (𝑘 + 1) → ((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥))) | 
| 168 | 150, 167 | jaod 859 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ((𝑥 ∈ (𝑀...𝑘) ∨ 𝑥 = (𝑘 + 1)) → ((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥))) | 
| 169 | 139, 168 | sylbid 240 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝑥 ∈ (𝑀...(𝑘 + 1)) → ((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥))) | 
| 170 | 169 | ralrimiv 3144 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ∀𝑥 ∈ (𝑀...(𝑘 + 1))((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥)) | 
| 171 |  | ffn 6735 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 → (𝐺‘(𝑤 + 1)) Fn (𝑀...(𝑘 + 1))) | 
| 172 | 171 | ad2antrl 728 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝐺‘(𝑤 + 1)) Fn (𝑀...(𝑘 + 1))) | 
| 173 | 57, 158 | fnmpti 6710 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) Fn (𝑀...(𝑤 + 1)) | 
| 174 |  | eqfnfv2 7051 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝐺‘(𝑤 + 1)) Fn (𝑀...(𝑘 + 1)) ∧ (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) Fn (𝑀...(𝑤 + 1))) → ((𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↔ ((𝑀...(𝑘 + 1)) = (𝑀...(𝑤 + 1)) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥)))) | 
| 175 | 172, 173,
174 | sylancl 586 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → ((𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)) ↔ ((𝑀...(𝑘 + 1)) = (𝑀...(𝑤 + 1)) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))‘𝑥)))) | 
| 176 | 137, 170,
175 | mpbir2and 713 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))) | 
| 177 | 176 | expr 456 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ (𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴) → (((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)))) | 
| 178 |  | eqeq1 2740 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) → ((𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) ↔ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)))) | 
| 179 | 178 | imbi1d 341 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) → (((𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))) ↔ (((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))))) | 
| 180 | 177, 179 | syl5ibrcom 247 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ (𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴) → ((𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) → ((𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))))) | 
| 181 | 180 | expimpd 453 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) → (((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))) → ((𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))))) | 
| 182 | 181 | ex 412 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑘 ∈ 𝑍 → (((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))) → ((𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)))))) | 
| 183 | 72, 117, 182 | rexlimd 3265 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (∃𝑘 ∈ 𝑍 ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺‘𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))) → ((𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))))) | 
| 184 | 116, 183 | mpd 15 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ((𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚)))) | 
| 185 | 184 | expcom 413 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ 𝑍 → (𝜑 → ((𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))))) | 
| 186 | 64, 185 | sylbir 235 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈
(ℤ≥‘𝑀) → (𝜑 → ((𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))))) | 
| 187 | 186 | a2d 29 | . . . . . . . . . . . . . . . . 17
⊢ (𝑤 ∈
(ℤ≥‘𝑀) → ((𝜑 → (𝐺‘𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺‘𝑚)‘𝑚))) → (𝜑 → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺‘𝑚)‘𝑚))))) | 
| 188 | 25, 30, 35, 40, 62, 187 | uzind4 12949 | . . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝜑 → (𝐺‘𝑘) = (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)))) | 
| 189 | 188, 63 | eleq2s 2858 | . . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ 𝑍 → (𝜑 → (𝐺‘𝑘) = (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)))) | 
| 190 | 189 | impcom 407 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚))) | 
| 191 | 190 | dmeqd 5915 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → dom (𝐺‘𝑘) = dom (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚))) | 
| 192 |  | dmmptg 6261 | . . . . . . . . . . . . . 14
⊢
(∀𝑚 ∈
(𝑀...𝑘)((𝐺‘𝑚)‘𝑚) ∈ V → dom (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑀...𝑘)) | 
| 193 | 57 | a1i 11 | . . . . . . . . . . . . . 14
⊢ (𝑚 ∈ (𝑀...𝑘) → ((𝐺‘𝑚)‘𝑚) ∈ V) | 
| 194 | 192, 193 | mprg 3066 | . . . . . . . . . . . . 13
⊢ dom
(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑀...𝑘) | 
| 195 | 191, 194 | eqtrdi 2792 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → dom (𝐺‘𝑘) = (𝑀...𝑘)) | 
| 196 | 195 | eqeq1d 2738 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (dom (𝐺‘𝑘) = (𝑀...𝑛) ↔ (𝑀...𝑘) = (𝑀...𝑛))) | 
| 197 |  | simpr 484 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | 
| 198 | 197, 63 | eleqtrdi 2850 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ (ℤ≥‘𝑀)) | 
| 199 |  | fzopth 13602 | . . . . . . . . . . . 12
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → ((𝑀...𝑘) = (𝑀...𝑛) ↔ (𝑀 = 𝑀 ∧ 𝑘 = 𝑛))) | 
| 200 | 198, 199 | syl 17 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑀...𝑘) = (𝑀...𝑛) ↔ (𝑀 = 𝑀 ∧ 𝑘 = 𝑛))) | 
| 201 | 196, 200 | bitrd 279 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (dom (𝐺‘𝑘) = (𝑀...𝑛) ↔ (𝑀 = 𝑀 ∧ 𝑘 = 𝑛))) | 
| 202 |  | simpr 484 | . . . . . . . . . 10
⊢ ((𝑀 = 𝑀 ∧ 𝑘 = 𝑛) → 𝑘 = 𝑛) | 
| 203 | 201, 202 | biimtrdi 253 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (dom (𝐺‘𝑘) = (𝑀...𝑛) → 𝑘 = 𝑛)) | 
| 204 | 20, 203 | syl5 34 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓) → 𝑘 = 𝑛)) | 
| 205 |  | oveq2 7440 | . . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (𝑀...𝑛) = (𝑀...𝑘)) | 
| 206 | 205 | feq2d 6721 | . . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → ((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ↔ (𝐺‘𝑘):(𝑀...𝑘)⟶𝐴)) | 
| 207 |  | sdc.4 | . . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (𝜓 ↔ 𝜃)) | 
| 208 | 207 | sbcbidv 3844 | . . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → ([(𝐺‘𝑘) / 𝑔]𝜓 ↔ [(𝐺‘𝑘) / 𝑔]𝜃)) | 
| 209 | 206, 208 | anbi12d 632 | . . . . . . . . . 10
⊢ (𝑛 = 𝑘 → (((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓) ↔ ((𝐺‘𝑘):(𝑀...𝑘)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜃))) | 
| 210 | 209 | equcoms 2018 | . . . . . . . . 9
⊢ (𝑘 = 𝑛 → (((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓) ↔ ((𝐺‘𝑘):(𝑀...𝑘)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜃))) | 
| 211 | 210 | biimpcd 249 | . . . . . . . 8
⊢ (((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓) → (𝑘 = 𝑛 → ((𝐺‘𝑘):(𝑀...𝑘)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜃))) | 
| 212 | 204, 211 | sylcom 30 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓) → ((𝐺‘𝑘):(𝑀...𝑘)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜃))) | 
| 213 | 212 | rexlimdvw 3159 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (∃𝑛 ∈ 𝑍 ((𝐺‘𝑘):(𝑀...𝑛)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜓) → ((𝐺‘𝑘):(𝑀...𝑘)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜃))) | 
| 214 | 18, 213 | mpd 15 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐺‘𝑘):(𝑀...𝑘)⟶𝐴 ∧ [(𝐺‘𝑘) / 𝑔]𝜃)) | 
| 215 | 214 | simpld 494 | . . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘):(𝑀...𝑘)⟶𝐴) | 
| 216 |  | eluzfz2 13573 | . . . . 5
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑘 ∈ (𝑀...𝑘)) | 
| 217 | 198, 216 | syl 17 | . . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ (𝑀...𝑘)) | 
| 218 | 215, 217 | ffvelcdmd 7104 | . . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐺‘𝑘)‘𝑘) ∈ 𝐴) | 
| 219 | 43 | cbvmptv 5254 | . . 3
⊢ (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑘 ∈ 𝑍 ↦ ((𝐺‘𝑘)‘𝑘)) | 
| 220 | 1, 218, 219 | fmptdf 7136 | . 2
⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)):𝑍⟶𝐴) | 
| 221 | 214 | simprd 495 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → [(𝐺‘𝑘) / 𝑔]𝜃) | 
| 222 | 190, 221 | sbceq1dd 3793 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → [(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜃) | 
| 223 | 222 | ex 412 | . . . 4
⊢ (𝜑 → (𝑘 ∈ 𝑍 → [(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜃)) | 
| 224 | 1, 223 | ralrimi 3256 | . . 3
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 [(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜃) | 
| 225 |  | mpteq1 5234 | . . . . . 6
⊢ ((𝑀...𝑛) = (𝑀...𝑘) → (𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚))) | 
| 226 |  | dfsbcq 3789 | . . . . . 6
⊢ ((𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) → ([(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓 ↔ [(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓)) | 
| 227 | 205, 225,
226 | 3syl 18 | . . . . 5
⊢ (𝑛 = 𝑘 → ([(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓 ↔ [(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓)) | 
| 228 | 207 | sbcbidv 3844 | . . . . 5
⊢ (𝑛 = 𝑘 → ([(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓 ↔ [(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜃)) | 
| 229 | 227, 228 | bitrd 279 | . . . 4
⊢ (𝑛 = 𝑘 → ([(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓 ↔ [(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜃)) | 
| 230 | 229 | cbvralvw 3236 | . . 3
⊢
(∀𝑛 ∈
𝑍 [(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓 ↔ ∀𝑘 ∈ 𝑍 [(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜃) | 
| 231 | 224, 230 | sylibr 234 | . 2
⊢ (𝜑 → ∀𝑛 ∈ 𝑍 [(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓) | 
| 232 | 70 | mptex 7244 | . . 3
⊢ (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) ∈ V | 
| 233 |  | feq1 6715 | . . . 4
⊢ (𝑓 = (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) → (𝑓:𝑍⟶𝐴 ↔ (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)):𝑍⟶𝐴)) | 
| 234 |  | vex 3483 | . . . . . . . 8
⊢ 𝑓 ∈ V | 
| 235 | 234 | resex 6046 | . . . . . . 7
⊢ (𝑓 ↾ (𝑀...𝑛)) ∈ V | 
| 236 |  | sdc.2 | . . . . . . 7
⊢ (𝑔 = (𝑓 ↾ (𝑀...𝑛)) → (𝜓 ↔ 𝜒)) | 
| 237 | 235, 236 | sbcie 3829 | . . . . . 6
⊢
([(𝑓 ↾
(𝑀...𝑛)) / 𝑔]𝜓 ↔ 𝜒) | 
| 238 |  | reseq1 5990 | . . . . . . . 8
⊢ (𝑓 = (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) → (𝑓 ↾ (𝑀...𝑛)) = ((𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑛))) | 
| 239 |  | fzssuz 13606 | . . . . . . . . . 10
⊢ (𝑀...𝑛) ⊆ (ℤ≥‘𝑀) | 
| 240 | 239, 63 | sseqtrri 4032 | . . . . . . . . 9
⊢ (𝑀...𝑛) ⊆ 𝑍 | 
| 241 |  | resmpt 6054 | . . . . . . . . 9
⊢ ((𝑀...𝑛) ⊆ 𝑍 → ((𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑛)) = (𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚))) | 
| 242 | 240, 241 | ax-mp 5 | . . . . . . . 8
⊢ ((𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) ↾ (𝑀...𝑛)) = (𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) | 
| 243 | 238, 242 | eqtrdi 2792 | . . . . . . 7
⊢ (𝑓 = (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) → (𝑓 ↾ (𝑀...𝑛)) = (𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚))) | 
| 244 | 243 | sbceq1d 3792 | . . . . . 6
⊢ (𝑓 = (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) → ([(𝑓 ↾ (𝑀...𝑛)) / 𝑔]𝜓 ↔ [(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓)) | 
| 245 | 237, 244 | bitr3id 285 | . . . . 5
⊢ (𝑓 = (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) → (𝜒 ↔ [(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓)) | 
| 246 | 245 | ralbidv 3177 | . . . 4
⊢ (𝑓 = (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) → (∀𝑛 ∈ 𝑍 𝜒 ↔ ∀𝑛 ∈ 𝑍 [(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓)) | 
| 247 | 233, 246 | anbi12d 632 | . . 3
⊢ (𝑓 = (𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)) → ((𝑓:𝑍⟶𝐴 ∧ ∀𝑛 ∈ 𝑍 𝜒) ↔ ((𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)):𝑍⟶𝐴 ∧ ∀𝑛 ∈ 𝑍 [(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓))) | 
| 248 | 232, 247 | spcev 3605 | . 2
⊢ (((𝑚 ∈ 𝑍 ↦ ((𝐺‘𝑚)‘𝑚)):𝑍⟶𝐴 ∧ ∀𝑛 ∈ 𝑍 [(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺‘𝑚)‘𝑚)) / 𝑔]𝜓) → ∃𝑓(𝑓:𝑍⟶𝐴 ∧ ∀𝑛 ∈ 𝑍 𝜒)) | 
| 249 | 220, 231,
248 | syl2anc 584 | 1
⊢ (𝜑 → ∃𝑓(𝑓:𝑍⟶𝐴 ∧ ∀𝑛 ∈ 𝑍 𝜒)) |