Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sdclem2 Structured version   Visualization version   GIF version

Theorem sdclem2 34488
Description: Lemma for sdc 34490. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
sdc.1 𝑍 = (ℤ𝑀)
sdc.2 (𝑔 = (𝑓 ↾ (𝑀...𝑛)) → (𝜓𝜒))
sdc.3 (𝑛 = 𝑀 → (𝜓𝜏))
sdc.4 (𝑛 = 𝑘 → (𝜓𝜃))
sdc.5 ((𝑔 = 𝑛 = (𝑘 + 1)) → (𝜓𝜎))
sdc.6 (𝜑𝐴𝑉)
sdc.7 (𝜑𝑀 ∈ ℤ)
sdc.8 (𝜑 → ∃𝑔(𝑔:{𝑀}⟶𝐴𝜏))
sdc.9 ((𝜑𝑘𝑍) → ((𝑔:(𝑀...𝑘)⟶𝐴𝜃) → ∃(:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
sdc.10 𝐽 = {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)}
sdc.11 𝐹 = (𝑤𝑍, 𝑥𝐽 ↦ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
sdc.12 𝑘𝜑
sdc.13 (𝜑𝐺:𝑍𝐽)
sdc.14 (𝜑 → (𝐺𝑀):(𝑀...𝑀)⟶𝐴)
sdc.15 ((𝜑𝑤𝑍) → (𝐺‘(𝑤 + 1)) ∈ (𝑤𝐹(𝐺𝑤)))
Assertion
Ref Expression
sdclem2 (𝜑 → ∃𝑓(𝑓:𝑍𝐴 ∧ ∀𝑛𝑍 𝜒))
Distinct variable groups:   𝑓,𝑔,,𝑘,𝑛,𝑤,𝑥,𝐴   ,𝐽,𝑘,𝑤,𝑥   𝑓,𝑀,𝑔,,𝑘,𝑛,𝑤,𝑥   𝜒,𝑔   𝑛,𝐹,𝑤,𝑥   𝜓,𝑓,,𝑘,𝑥   𝜎,𝑓,𝑔,𝑛,𝑥   𝑓,𝐺,𝑔,,𝑘,𝑛,𝑤,𝑥   𝜑,𝑛,𝑤,𝑥   𝜃,𝑛,𝑤,𝑥   ,𝑉   𝜏,,𝑘,𝑛,𝑤,𝑥   𝑓,𝑍,𝑔,,𝑘,𝑛,𝑤,𝑥
Allowed substitution hints:   𝜑(𝑓,𝑔,,𝑘)   𝜓(𝑤,𝑔,𝑛)   𝜒(𝑥,𝑤,𝑓,,𝑘,𝑛)   𝜃(𝑓,𝑔,,𝑘)   𝜏(𝑓,𝑔)   𝜎(𝑤,,𝑘)   𝐹(𝑓,𝑔,,𝑘)   𝐽(𝑓,𝑔,𝑛)   𝑉(𝑥,𝑤,𝑓,𝑔,𝑘,𝑛)

Proof of Theorem sdclem2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 sdc.12 . . 3 𝑘𝜑
2 sdc.13 . . . . . . . 8 (𝜑𝐺:𝑍𝐽)
32ffvelrnda 6674 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝐽)
4 sdc.10 . . . . . . . . 9 𝐽 = {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)}
54eleq2i 2851 . . . . . . . 8 ((𝐺𝑘) ∈ 𝐽 ↔ (𝐺𝑘) ∈ {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)})
6 nfcv 2926 . . . . . . . . . 10 𝑔𝑍
7 nfv 1873 . . . . . . . . . . 11 𝑔(𝐺𝑘):(𝑀...𝑛)⟶𝐴
8 nfsbc1v 3695 . . . . . . . . . . 11 𝑔[(𝐺𝑘) / 𝑔]𝜓
97, 8nfan 1862 . . . . . . . . . 10 𝑔((𝐺𝑘):(𝑀...𝑛)⟶𝐴[(𝐺𝑘) / 𝑔]𝜓)
106, 9nfrex 3247 . . . . . . . . 9 𝑔𝑛𝑍 ((𝐺𝑘):(𝑀...𝑛)⟶𝐴[(𝐺𝑘) / 𝑔]𝜓)
11 fvex 6509 . . . . . . . . 9 (𝐺𝑘) ∈ V
12 feq1 6322 . . . . . . . . . . 11 (𝑔 = (𝐺𝑘) → (𝑔:(𝑀...𝑛)⟶𝐴 ↔ (𝐺𝑘):(𝑀...𝑛)⟶𝐴))
13 sbceq1a 3686 . . . . . . . . . . 11 (𝑔 = (𝐺𝑘) → (𝜓[(𝐺𝑘) / 𝑔]𝜓))
1412, 13anbi12d 621 . . . . . . . . . 10 (𝑔 = (𝐺𝑘) → ((𝑔:(𝑀...𝑛)⟶𝐴𝜓) ↔ ((𝐺𝑘):(𝑀...𝑛)⟶𝐴[(𝐺𝑘) / 𝑔]𝜓)))
1514rexbidv 3236 . . . . . . . . 9 (𝑔 = (𝐺𝑘) → (∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓) ↔ ∃𝑛𝑍 ((𝐺𝑘):(𝑀...𝑛)⟶𝐴[(𝐺𝑘) / 𝑔]𝜓)))
1610, 11, 15elabf 3573 . . . . . . . 8 ((𝐺𝑘) ∈ {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ↔ ∃𝑛𝑍 ((𝐺𝑘):(𝑀...𝑛)⟶𝐴[(𝐺𝑘) / 𝑔]𝜓))
175, 16bitri 267 . . . . . . 7 ((𝐺𝑘) ∈ 𝐽 ↔ ∃𝑛𝑍 ((𝐺𝑘):(𝑀...𝑛)⟶𝐴[(𝐺𝑘) / 𝑔]𝜓))
183, 17sylib 210 . . . . . 6 ((𝜑𝑘𝑍) → ∃𝑛𝑍 ((𝐺𝑘):(𝑀...𝑛)⟶𝐴[(𝐺𝑘) / 𝑔]𝜓))
19 fdm 6349 . . . . . . . . . 10 ((𝐺𝑘):(𝑀...𝑛)⟶𝐴 → dom (𝐺𝑘) = (𝑀...𝑛))
2019adantr 473 . . . . . . . . 9 (((𝐺𝑘):(𝑀...𝑛)⟶𝐴[(𝐺𝑘) / 𝑔]𝜓) → dom (𝐺𝑘) = (𝑀...𝑛))
21 fveq2 6496 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑀 → (𝐺𝑥) = (𝐺𝑀))
22 oveq2 6982 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑀 → (𝑀...𝑥) = (𝑀...𝑀))
2322mpteq1d 5012 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑀 → (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺𝑚)‘𝑚)))
2421, 23eqeq12d 2787 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑀 → ((𝐺𝑥) = (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺𝑚)‘𝑚)) ↔ (𝐺𝑀) = (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺𝑚)‘𝑚))))
2524imbi2d 333 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑀 → ((𝜑 → (𝐺𝑥) = (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺𝑚)‘𝑚))) ↔ (𝜑 → (𝐺𝑀) = (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺𝑚)‘𝑚)))))
26 fveq2 6496 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑤 → (𝐺𝑥) = (𝐺𝑤))
27 oveq2 6982 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑤 → (𝑀...𝑥) = (𝑀...𝑤))
2827mpteq1d 5012 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑤 → (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))
2926, 28eqeq12d 2787 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑤 → ((𝐺𝑥) = (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺𝑚)‘𝑚)) ↔ (𝐺𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚))))
3029imbi2d 333 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑤 → ((𝜑 → (𝐺𝑥) = (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺𝑚)‘𝑚))) ↔ (𝜑 → (𝐺𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))))
31 fveq2 6496 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑤 + 1) → (𝐺𝑥) = (𝐺‘(𝑤 + 1)))
32 oveq2 6982 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑤 + 1) → (𝑀...𝑥) = (𝑀...(𝑤 + 1)))
3332mpteq1d 5012 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑤 + 1) → (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚)))
3431, 33eqeq12d 2787 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑤 + 1) → ((𝐺𝑥) = (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺𝑚)‘𝑚)) ↔ (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚))))
3534imbi2d 333 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑤 + 1) → ((𝜑 → (𝐺𝑥) = (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺𝑚)‘𝑚))) ↔ (𝜑 → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚)))))
36 fveq2 6496 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑘 → (𝐺𝑥) = (𝐺𝑘))
37 oveq2 6982 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑘 → (𝑀...𝑥) = (𝑀...𝑘))
3837mpteq1d 5012 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑘 → (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺𝑚)‘𝑚)))
3936, 38eqeq12d 2787 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑘 → ((𝐺𝑥) = (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺𝑚)‘𝑚)) ↔ (𝐺𝑘) = (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺𝑚)‘𝑚))))
4039imbi2d 333 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑘 → ((𝜑 → (𝐺𝑥) = (𝑚 ∈ (𝑀...𝑥) ↦ ((𝐺𝑚)‘𝑚))) ↔ (𝜑 → (𝐺𝑘) = (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺𝑚)‘𝑚)))))
41 fveq2 6496 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 = 𝑘 → (𝐺𝑚) = (𝐺𝑘))
42 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 = 𝑘𝑚 = 𝑘)
4341, 42fveq12d 6503 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 = 𝑘 → ((𝐺𝑚)‘𝑚) = ((𝐺𝑘)‘𝑘))
44 eqid 2772 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺𝑚)‘𝑚))
45 fvex 6509 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺𝑘)‘𝑘) ∈ V
4643, 44, 45fvmpt 6593 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (𝑀...𝑀) → ((𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺𝑚)‘𝑚))‘𝑘) = ((𝐺𝑘)‘𝑘))
4746adantl 474 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (𝑀...𝑀)) → ((𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺𝑚)‘𝑚))‘𝑘) = ((𝐺𝑘)‘𝑘))
48 elfz1eq 12732 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ (𝑀...𝑀) → 𝑘 = 𝑀)
4948adantl 474 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ (𝑀...𝑀)) → 𝑘 = 𝑀)
5049fveq2d 6500 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ (𝑀...𝑀)) → (𝐺𝑘) = (𝐺𝑀))
5150fveq1d 6498 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (𝑀...𝑀)) → ((𝐺𝑘)‘𝑘) = ((𝐺𝑀)‘𝑘))
5247, 51eqtr2d 2809 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (𝑀...𝑀)) → ((𝐺𝑀)‘𝑘) = ((𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺𝑚)‘𝑚))‘𝑘))
5352ex 405 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑘 ∈ (𝑀...𝑀) → ((𝐺𝑀)‘𝑘) = ((𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺𝑚)‘𝑚))‘𝑘)))
541, 53ralrimi 3160 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑘 ∈ (𝑀...𝑀)((𝐺𝑀)‘𝑘) = ((𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺𝑚)‘𝑚))‘𝑘))
55 sdc.14 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐺𝑀):(𝑀...𝑀)⟶𝐴)
5655ffnd 6342 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐺𝑀) Fn (𝑀...𝑀))
57 fvex 6509 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺𝑚)‘𝑚) ∈ V
5857, 44fnmpti 6318 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺𝑚)‘𝑚)) Fn (𝑀...𝑀)
59 eqfnfv 6625 . . . . . . . . . . . . . . . . . . . 20 (((𝐺𝑀) Fn (𝑀...𝑀) ∧ (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺𝑚)‘𝑚)) Fn (𝑀...𝑀)) → ((𝐺𝑀) = (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺𝑚)‘𝑚)) ↔ ∀𝑘 ∈ (𝑀...𝑀)((𝐺𝑀)‘𝑘) = ((𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺𝑚)‘𝑚))‘𝑘)))
6056, 58, 59sylancl 577 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐺𝑀) = (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺𝑚)‘𝑚)) ↔ ∀𝑘 ∈ (𝑀...𝑀)((𝐺𝑀)‘𝑘) = ((𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺𝑚)‘𝑚))‘𝑘)))
6154, 60mpbird 249 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐺𝑀) = (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺𝑚)‘𝑚)))
6261a1i 11 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℤ → (𝜑 → (𝐺𝑀) = (𝑚 ∈ (𝑀...𝑀) ↦ ((𝐺𝑚)‘𝑚))))
63 sdc.1 . . . . . . . . . . . . . . . . . . . 20 𝑍 = (ℤ𝑀)
6463eleq2i 2851 . . . . . . . . . . . . . . . . . . 19 (𝑤𝑍𝑤 ∈ (ℤ𝑀))
652ffvelrnda 6674 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑤𝑍) → (𝐺𝑤) ∈ 𝐽)
66 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑤𝑍) → 𝑤𝑍)
67 3simpa 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)) ∧ 𝜎) → (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘))))
6867reximi 3184 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)) ∧ 𝜎) → ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘))))
6968ss2abi 3927 . . . . . . . . . . . . . . . . . . . . . . . . . 26 { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ⊆ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)))}
7063fvexi 6510 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑍 ∈ V
71 nfv 1873 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑘 𝑤𝑍
721, 71nfan 1862 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑘(𝜑𝑤𝑍)
73 sdc.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑𝐴𝑉)
7473adantr 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑤𝑍) → 𝐴𝑉)
75 simpl 475 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘))) → :(𝑀...(𝑘 + 1))⟶𝐴)
76 ovex 7006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑀...(𝑘 + 1)) ∈ V
77 elmapg 8217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐴𝑉 ∧ (𝑀...(𝑘 + 1)) ∈ V) → ( ∈ (𝐴𝑚 (𝑀...(𝑘 + 1))) ↔ :(𝑀...(𝑘 + 1))⟶𝐴))
7876, 77mpan2 678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝐴𝑉 → ( ∈ (𝐴𝑚 (𝑀...(𝑘 + 1))) ↔ :(𝑀...(𝑘 + 1))⟶𝐴))
7975, 78syl5ibr 238 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐴𝑉 → ((:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘))) → ∈ (𝐴𝑚 (𝑀...(𝑘 + 1)))))
8079abssdv 3929 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐴𝑉 → { ∣ (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)))} ⊆ (𝐴𝑚 (𝑀...(𝑘 + 1))))
8174, 80syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑤𝑍) → { ∣ (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)))} ⊆ (𝐴𝑚 (𝑀...(𝑘 + 1))))
82 ovex 7006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐴𝑚 (𝑀...(𝑘 + 1))) ∈ V
83 ssexg 5079 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (({ ∣ (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)))} ⊆ (𝐴𝑚 (𝑀...(𝑘 + 1))) ∧ (𝐴𝑚 (𝑀...(𝑘 + 1))) ∈ V) → { ∣ (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)))} ∈ V)
8481, 82, 83sylancl 577 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑤𝑍) → { ∣ (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)))} ∈ V)
8584a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑤𝑍) → (𝑘𝑍 → { ∣ (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)))} ∈ V))
8672, 85ralrimi 3160 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑤𝑍) → ∀𝑘𝑍 { ∣ (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)))} ∈ V)
87 abrexex2g 7475 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑍 ∈ V ∧ ∀𝑘𝑍 { ∣ (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)))} ∈ V) → { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)))} ∈ V)
8870, 86, 87sylancr 578 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑤𝑍) → { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)))} ∈ V)
89 ssexg 5079 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (({ ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ⊆ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)))} ∧ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)))} ∈ V) → { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V)
9069, 88, 89sylancr 578 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑤𝑍) → { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V)
91 eqeq1 2776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 = (𝐺𝑤) → (𝑥 = ( ↾ (𝑀...𝑘)) ↔ (𝐺𝑤) = ( ↾ (𝑀...𝑘))))
92913anbi2d 1420 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 = (𝐺𝑤) → ((:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎) ↔ (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
9392rexbidv 3236 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 = (𝐺𝑤) → (∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎) ↔ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
9493abbidv 2837 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 = (𝐺𝑤) → { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} = { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
9594eleq1d 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = (𝐺𝑤) → ({ ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V ↔ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V))
96 oveq2 6982 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 = (𝐺𝑤) → (𝑤𝐹𝑥) = (𝑤𝐹(𝐺𝑤)))
9796, 94eqeq12d 2787 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = (𝐺𝑤) → ((𝑤𝐹𝑥) = { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ↔ (𝑤𝐹(𝐺𝑤)) = { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)) ∧ 𝜎)}))
9895, 97imbi12d 337 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = (𝐺𝑤) → (({ ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V → (𝑤𝐹𝑥) = { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)}) ↔ ({ ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V → (𝑤𝐹(𝐺𝑤)) = { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})))
9998imbi2d 333 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = (𝐺𝑤) → ((𝑤𝑍 → ({ ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V → (𝑤𝐹𝑥) = { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})) ↔ (𝑤𝑍 → ({ ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V → (𝑤𝐹(𝐺𝑤)) = { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)) ∧ 𝜎)}))))
100 sdc.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝐹 = (𝑤𝑍, 𝑥𝐽 ↦ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
101100ovmpt4g 7111 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑤𝑍𝑥𝐽 ∧ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V) → (𝑤𝐹𝑥) = { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
1021013com12 1103 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥𝐽𝑤𝑍 ∧ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V) → (𝑤𝐹𝑥) = { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
1031023exp 1099 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥𝐽 → (𝑤𝑍 → ({ ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V → (𝑤𝐹𝑥) = { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})))
10499, 103vtoclga 3487 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐺𝑤) ∈ 𝐽 → (𝑤𝑍 → ({ ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ V → (𝑤𝐹(𝐺𝑤)) = { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})))
10565, 66, 90, 104syl3c 66 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑤𝑍) → (𝑤𝐹(𝐺𝑤)) = { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
106105, 69syl6eqss 3905 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤𝑍) → (𝑤𝐹(𝐺𝑤)) ⊆ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)))})
107 sdc.15 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤𝑍) → (𝐺‘(𝑤 + 1)) ∈ (𝑤𝐹(𝐺𝑤)))
108106, 107sseldd 3853 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤𝑍) → (𝐺‘(𝑤 + 1)) ∈ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)))})
109 fvex 6509 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺‘(𝑤 + 1)) ∈ V
110 feq1 6322 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( = (𝐺‘(𝑤 + 1)) → (:(𝑀...(𝑘 + 1))⟶𝐴 ↔ (𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴))
111 reseq1 5686 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( = (𝐺‘(𝑤 + 1)) → ( ↾ (𝑀...𝑘)) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)))
112111eqeq2d 2782 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( = (𝐺‘(𝑤 + 1)) → ((𝐺𝑤) = ( ↾ (𝑀...𝑘)) ↔ (𝐺𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))))
113110, 112anbi12d 621 . . . . . . . . . . . . . . . . . . . . . . . 24 ( = (𝐺‘(𝑤 + 1)) → ((:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘))) ↔ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)))))
114113rexbidv 3236 . . . . . . . . . . . . . . . . . . . . . . 23 ( = (𝐺‘(𝑤 + 1)) → (∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘))) ↔ ∃𝑘𝑍 ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)))))
115109, 114elab 3576 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺‘(𝑤 + 1)) ∈ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ( ↾ (𝑀...𝑘)))} ↔ ∃𝑘𝑍 ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))))
116108, 115sylib 210 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤𝑍) → ∃𝑘𝑍 ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))))
117 nfv 1873 . . . . . . . . . . . . . . . . . . . . . 22 𝑘((𝐺𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚)))
118 simprl 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → (𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴)
119 fzssp1 12764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑀...𝑘) ⊆ (𝑀...(𝑘 + 1))
120 fssres 6370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝑀...𝑘) ⊆ (𝑀...(𝑘 + 1))) → ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)):(𝑀...𝑘)⟶𝐴)
121118, 119, 120sylancl 577 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)):(𝑀...𝑘)⟶𝐴)
122121fdmd 6350 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → dom ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑀...𝑘))
123 eqid 2772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚))
12457, 123fnmpti 6318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)) Fn (𝑀...𝑤)
125 simprr 760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))
126125fneq1d 6276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → (((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) Fn (𝑀...𝑤) ↔ (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)) Fn (𝑀...𝑤)))
127124, 126mpbiri 250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) Fn (𝑀...𝑤))
128 fndm 6285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) Fn (𝑀...𝑤) → dom ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑀...𝑤))
129127, 128syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → dom ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑀...𝑤))
130122, 129eqtr3d 2810 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → (𝑀...𝑘) = (𝑀...𝑤))
131 simplr 756 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → 𝑘𝑍)
132131, 63syl6eleq 2870 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → 𝑘 ∈ (ℤ𝑀))
133 fzopth 12758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 ∈ (ℤ𝑀) → ((𝑀...𝑘) = (𝑀...𝑤) ↔ (𝑀 = 𝑀𝑘 = 𝑤)))
134132, 133syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → ((𝑀...𝑘) = (𝑀...𝑤) ↔ (𝑀 = 𝑀𝑘 = 𝑤)))
135130, 134mpbid 224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → (𝑀 = 𝑀𝑘 = 𝑤))
136135simprd 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → 𝑘 = 𝑤)
137136oveq1d 6989 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → (𝑘 + 1) = (𝑤 + 1))
138137oveq2d 6990 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → (𝑀...(𝑘 + 1)) = (𝑀...(𝑤 + 1)))
139 elfzp1 12771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 ∈ (ℤ𝑀) → (𝑥 ∈ (𝑀...(𝑘 + 1)) ↔ (𝑥 ∈ (𝑀...𝑘) ∨ 𝑥 = (𝑘 + 1))))
140132, 139syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → (𝑥 ∈ (𝑀...(𝑘 + 1)) ↔ (𝑥 ∈ (𝑀...𝑘) ∨ 𝑥 = (𝑘 + 1))))
141130reseq2d 5692 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚)) ↾ (𝑀...𝑘)) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚)) ↾ (𝑀...𝑤)))
142 fzssp1 12764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑀...𝑤) ⊆ (𝑀...(𝑤 + 1))
143 resmpt 5747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑀...𝑤) ⊆ (𝑀...(𝑤 + 1)) → ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚)) ↾ (𝑀...𝑤)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))
144142, 143ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚)) ↾ (𝑀...𝑤)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚))
145141, 144syl6req 2825 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚)) ↾ (𝑀...𝑘)))
146125, 145eqtrd 2808 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚)) ↾ (𝑀...𝑘)))
147146fveq1d 6498 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → (((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))‘𝑥) = (((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚)) ↾ (𝑀...𝑘))‘𝑥))
148 fvres 6515 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 ∈ (𝑀...𝑘) → (((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))‘𝑥) = ((𝐺‘(𝑤 + 1))‘𝑥))
149 fvres 6515 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 ∈ (𝑀...𝑘) → (((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚)) ↾ (𝑀...𝑘))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚))‘𝑥))
150148, 149eqeq12d 2787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ (𝑀...𝑘) → ((((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))‘𝑥) = (((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚)) ↾ (𝑀...𝑘))‘𝑥) ↔ ((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚))‘𝑥)))
151147, 150syl5ibcom 237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → (𝑥 ∈ (𝑀...𝑘) → ((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚))‘𝑥)))
152137eqeq2d 2782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → (𝑥 = (𝑘 + 1) ↔ 𝑥 = (𝑤 + 1)))
153136, 132eqeltrrd 2861 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → 𝑤 ∈ (ℤ𝑀))
154 peano2uz 12113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑤 ∈ (ℤ𝑀) → (𝑤 + 1) ∈ (ℤ𝑀))
155 eluzfz2 12729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑤 + 1) ∈ (ℤ𝑀) → (𝑤 + 1) ∈ (𝑀...(𝑤 + 1)))
156 fveq2 6496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑚 = (𝑤 + 1) → (𝐺𝑚) = (𝐺‘(𝑤 + 1)))
157 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑚 = (𝑤 + 1) → 𝑚 = (𝑤 + 1))
158156, 157fveq12d 6503 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑚 = (𝑤 + 1) → ((𝐺𝑚)‘𝑚) = ((𝐺‘(𝑤 + 1))‘(𝑤 + 1)))
159 eqid 2772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚))
160 fvex 6509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐺‘(𝑤 + 1))‘(𝑤 + 1)) ∈ V
161158, 159, 160fvmpt 6593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑤 + 1) ∈ (𝑀...(𝑤 + 1)) → ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚))‘(𝑤 + 1)) = ((𝐺‘(𝑤 + 1))‘(𝑤 + 1)))
162153, 154, 155, 1614syl 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚))‘(𝑤 + 1)) = ((𝐺‘(𝑤 + 1))‘(𝑤 + 1)))
163162eqcomd 2778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → ((𝐺‘(𝑤 + 1))‘(𝑤 + 1)) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚))‘(𝑤 + 1)))
164 fveq2 6496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 = (𝑤 + 1) → ((𝐺‘(𝑤 + 1))‘𝑥) = ((𝐺‘(𝑤 + 1))‘(𝑤 + 1)))
165 fveq2 6496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 = (𝑤 + 1) → ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚))‘(𝑤 + 1)))
166164, 165eqeq12d 2787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 = (𝑤 + 1) → (((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚))‘𝑥) ↔ ((𝐺‘(𝑤 + 1))‘(𝑤 + 1)) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚))‘(𝑤 + 1))))
167163, 166syl5ibrcom 239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → (𝑥 = (𝑤 + 1) → ((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚))‘𝑥)))
168152, 167sylbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → (𝑥 = (𝑘 + 1) → ((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚))‘𝑥)))
169151, 168jaod 845 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → ((𝑥 ∈ (𝑀...𝑘) ∨ 𝑥 = (𝑘 + 1)) → ((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚))‘𝑥)))
170140, 169sylbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → (𝑥 ∈ (𝑀...(𝑘 + 1)) → ((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚))‘𝑥)))
171170ralrimiv 3125 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → ∀𝑥 ∈ (𝑀...(𝑘 + 1))((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚))‘𝑥))
172 ffn 6341 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 → (𝐺‘(𝑤 + 1)) Fn (𝑀...(𝑘 + 1)))
173172ad2antrl 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → (𝐺‘(𝑤 + 1)) Fn (𝑀...(𝑘 + 1)))
17457, 159fnmpti 6318 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚)) Fn (𝑀...(𝑤 + 1))
175 eqfnfv2 6626 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐺‘(𝑤 + 1)) Fn (𝑀...(𝑘 + 1)) ∧ (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚)) Fn (𝑀...(𝑤 + 1))) → ((𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚)) ↔ ((𝑀...(𝑘 + 1)) = (𝑀...(𝑤 + 1)) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚))‘𝑥))))
176173, 174, 175sylancl 577 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → ((𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚)) ↔ ((𝑀...(𝑘 + 1)) = (𝑀...(𝑤 + 1)) ∧ ∀𝑥 ∈ (𝑀...(𝑘 + 1))((𝐺‘(𝑤 + 1))‘𝑥) = ((𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚))‘𝑥))))
177138, 171, 176mpbir2and 700 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)))) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚)))
178177expr 449 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ (𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴) → (((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚))))
179 eqeq1 2776 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐺𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) → ((𝐺𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)) ↔ ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚))))
180179imbi1d 334 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐺𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) → (((𝐺𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚))) ↔ (((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚)))))
181178, 180syl5ibrcom 239 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑤𝑍) ∧ 𝑘𝑍) ∧ (𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴) → ((𝐺𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘)) → ((𝐺𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚)))))
182181expimpd 446 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑤𝑍) ∧ 𝑘𝑍) → (((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))) → ((𝐺𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚)))))
183182ex 405 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤𝑍) → (𝑘𝑍 → (((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))) → ((𝐺𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚))))))
18472, 117, 183rexlimd 3254 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤𝑍) → (∃𝑘𝑍 ((𝐺‘(𝑤 + 1)):(𝑀...(𝑘 + 1))⟶𝐴 ∧ (𝐺𝑤) = ((𝐺‘(𝑤 + 1)) ↾ (𝑀...𝑘))) → ((𝐺𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚)))))
185116, 184mpd 15 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤𝑍) → ((𝐺𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚))))
186185expcom 406 . . . . . . . . . . . . . . . . . . 19 (𝑤𝑍 → (𝜑 → ((𝐺𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚)))))
18764, 186sylbir 227 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (ℤ𝑀) → (𝜑 → ((𝐺𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚)) → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚)))))
188187a2d 29 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (ℤ𝑀) → ((𝜑 → (𝐺𝑤) = (𝑚 ∈ (𝑀...𝑤) ↦ ((𝐺𝑚)‘𝑚))) → (𝜑 → (𝐺‘(𝑤 + 1)) = (𝑚 ∈ (𝑀...(𝑤 + 1)) ↦ ((𝐺𝑚)‘𝑚)))))
18925, 30, 35, 40, 62, 188uzind4 12118 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ𝑀) → (𝜑 → (𝐺𝑘) = (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺𝑚)‘𝑚))))
190189, 63eleq2s 2878 . . . . . . . . . . . . . . 15 (𝑘𝑍 → (𝜑 → (𝐺𝑘) = (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺𝑚)‘𝑚))))
191190impcom 399 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺𝑚)‘𝑚)))
192191dmeqd 5620 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → dom (𝐺𝑘) = dom (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺𝑚)‘𝑚)))
193 dmmptg 5932 . . . . . . . . . . . . . 14 (∀𝑚 ∈ (𝑀...𝑘)((𝐺𝑚)‘𝑚) ∈ V → dom (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺𝑚)‘𝑚)) = (𝑀...𝑘))
19457a1i 11 . . . . . . . . . . . . . 14 (𝑚 ∈ (𝑀...𝑘) → ((𝐺𝑚)‘𝑚) ∈ V)
195193, 194mprg 3096 . . . . . . . . . . . . 13 dom (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺𝑚)‘𝑚)) = (𝑀...𝑘)
196192, 195syl6eq 2824 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → dom (𝐺𝑘) = (𝑀...𝑘))
197196eqeq1d 2774 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (dom (𝐺𝑘) = (𝑀...𝑛) ↔ (𝑀...𝑘) = (𝑀...𝑛)))
198 simpr 477 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → 𝑘𝑍)
199198, 63syl6eleq 2870 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → 𝑘 ∈ (ℤ𝑀))
200 fzopth 12758 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑀) → ((𝑀...𝑘) = (𝑀...𝑛) ↔ (𝑀 = 𝑀𝑘 = 𝑛)))
201199, 200syl 17 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → ((𝑀...𝑘) = (𝑀...𝑛) ↔ (𝑀 = 𝑀𝑘 = 𝑛)))
202197, 201bitrd 271 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (dom (𝐺𝑘) = (𝑀...𝑛) ↔ (𝑀 = 𝑀𝑘 = 𝑛)))
203 simpr 477 . . . . . . . . . 10 ((𝑀 = 𝑀𝑘 = 𝑛) → 𝑘 = 𝑛)
204202, 203syl6bi 245 . . . . . . . . 9 ((𝜑𝑘𝑍) → (dom (𝐺𝑘) = (𝑀...𝑛) → 𝑘 = 𝑛))
20520, 204syl5 34 . . . . . . . 8 ((𝜑𝑘𝑍) → (((𝐺𝑘):(𝑀...𝑛)⟶𝐴[(𝐺𝑘) / 𝑔]𝜓) → 𝑘 = 𝑛))
206 oveq2 6982 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (𝑀...𝑛) = (𝑀...𝑘))
207206feq2d 6327 . . . . . . . . . . 11 (𝑛 = 𝑘 → ((𝐺𝑘):(𝑀...𝑛)⟶𝐴 ↔ (𝐺𝑘):(𝑀...𝑘)⟶𝐴))
208 sdc.4 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (𝜓𝜃))
209208sbcbidv 3725 . . . . . . . . . . 11 (𝑛 = 𝑘 → ([(𝐺𝑘) / 𝑔]𝜓[(𝐺𝑘) / 𝑔]𝜃))
210207, 209anbi12d 621 . . . . . . . . . 10 (𝑛 = 𝑘 → (((𝐺𝑘):(𝑀...𝑛)⟶𝐴[(𝐺𝑘) / 𝑔]𝜓) ↔ ((𝐺𝑘):(𝑀...𝑘)⟶𝐴[(𝐺𝑘) / 𝑔]𝜃)))
211210equcoms 1977 . . . . . . . . 9 (𝑘 = 𝑛 → (((𝐺𝑘):(𝑀...𝑛)⟶𝐴[(𝐺𝑘) / 𝑔]𝜓) ↔ ((𝐺𝑘):(𝑀...𝑘)⟶𝐴[(𝐺𝑘) / 𝑔]𝜃)))
212211biimpcd 241 . . . . . . . 8 (((𝐺𝑘):(𝑀...𝑛)⟶𝐴[(𝐺𝑘) / 𝑔]𝜓) → (𝑘 = 𝑛 → ((𝐺𝑘):(𝑀...𝑘)⟶𝐴[(𝐺𝑘) / 𝑔]𝜃)))
213205, 212sylcom 30 . . . . . . 7 ((𝜑𝑘𝑍) → (((𝐺𝑘):(𝑀...𝑛)⟶𝐴[(𝐺𝑘) / 𝑔]𝜓) → ((𝐺𝑘):(𝑀...𝑘)⟶𝐴[(𝐺𝑘) / 𝑔]𝜃)))
214213rexlimdvw 3229 . . . . . 6 ((𝜑𝑘𝑍) → (∃𝑛𝑍 ((𝐺𝑘):(𝑀...𝑛)⟶𝐴[(𝐺𝑘) / 𝑔]𝜓) → ((𝐺𝑘):(𝑀...𝑘)⟶𝐴[(𝐺𝑘) / 𝑔]𝜃)))
21518, 214mpd 15 . . . . 5 ((𝜑𝑘𝑍) → ((𝐺𝑘):(𝑀...𝑘)⟶𝐴[(𝐺𝑘) / 𝑔]𝜃))
216215simpld 487 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘):(𝑀...𝑘)⟶𝐴)
217 eluzfz2 12729 . . . . 5 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ (𝑀...𝑘))
218199, 217syl 17 . . . 4 ((𝜑𝑘𝑍) → 𝑘 ∈ (𝑀...𝑘))
219216, 218ffvelrnd 6675 . . 3 ((𝜑𝑘𝑍) → ((𝐺𝑘)‘𝑘) ∈ 𝐴)
22043cbvmptv 5024 . . 3 (𝑚𝑍 ↦ ((𝐺𝑚)‘𝑚)) = (𝑘𝑍 ↦ ((𝐺𝑘)‘𝑘))
2211, 219, 220fmptdf 6702 . 2 (𝜑 → (𝑚𝑍 ↦ ((𝐺𝑚)‘𝑚)):𝑍𝐴)
222215simprd 488 . . . . . 6 ((𝜑𝑘𝑍) → [(𝐺𝑘) / 𝑔]𝜃)
223191, 222sbceq1dd 3681 . . . . 5 ((𝜑𝑘𝑍) → [(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺𝑚)‘𝑚)) / 𝑔]𝜃)
224223ex 405 . . . 4 (𝜑 → (𝑘𝑍[(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺𝑚)‘𝑚)) / 𝑔]𝜃))
2251, 224ralrimi 3160 . . 3 (𝜑 → ∀𝑘𝑍 [(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺𝑚)‘𝑚)) / 𝑔]𝜃)
226 mpteq1 5011 . . . . . 6 ((𝑀...𝑛) = (𝑀...𝑘) → (𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺𝑚)‘𝑚)))
227 dfsbcq 3677 . . . . . 6 ((𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺𝑚)‘𝑚)) = (𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺𝑚)‘𝑚)) → ([(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺𝑚)‘𝑚)) / 𝑔]𝜓[(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺𝑚)‘𝑚)) / 𝑔]𝜓))
228206, 226, 2273syl 18 . . . . 5 (𝑛 = 𝑘 → ([(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺𝑚)‘𝑚)) / 𝑔]𝜓[(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺𝑚)‘𝑚)) / 𝑔]𝜓))
229208sbcbidv 3725 . . . . 5 (𝑛 = 𝑘 → ([(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺𝑚)‘𝑚)) / 𝑔]𝜓[(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺𝑚)‘𝑚)) / 𝑔]𝜃))
230228, 229bitrd 271 . . . 4 (𝑛 = 𝑘 → ([(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺𝑚)‘𝑚)) / 𝑔]𝜓[(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺𝑚)‘𝑚)) / 𝑔]𝜃))
231230cbvralv 3377 . . 3 (∀𝑛𝑍 [(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺𝑚)‘𝑚)) / 𝑔]𝜓 ↔ ∀𝑘𝑍 [(𝑚 ∈ (𝑀...𝑘) ↦ ((𝐺𝑚)‘𝑚)) / 𝑔]𝜃)
232225, 231sylibr 226 . 2 (𝜑 → ∀𝑛𝑍 [(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺𝑚)‘𝑚)) / 𝑔]𝜓)
23370mptex 6810 . . 3 (𝑚𝑍 ↦ ((𝐺𝑚)‘𝑚)) ∈ V
234 feq1 6322 . . . 4 (𝑓 = (𝑚𝑍 ↦ ((𝐺𝑚)‘𝑚)) → (𝑓:𝑍𝐴 ↔ (𝑚𝑍 ↦ ((𝐺𝑚)‘𝑚)):𝑍𝐴))
235 vex 3412 . . . . . . . 8 𝑓 ∈ V
236235resex 5741 . . . . . . 7 (𝑓 ↾ (𝑀...𝑛)) ∈ V
237 sdc.2 . . . . . . 7 (𝑔 = (𝑓 ↾ (𝑀...𝑛)) → (𝜓𝜒))
238236, 237sbcie 3710 . . . . . 6 ([(𝑓 ↾ (𝑀...𝑛)) / 𝑔]𝜓𝜒)
239 reseq1 5686 . . . . . . . 8 (𝑓 = (𝑚𝑍 ↦ ((𝐺𝑚)‘𝑚)) → (𝑓 ↾ (𝑀...𝑛)) = ((𝑚𝑍 ↦ ((𝐺𝑚)‘𝑚)) ↾ (𝑀...𝑛)))
240 fzssuz 12762 . . . . . . . . . 10 (𝑀...𝑛) ⊆ (ℤ𝑀)
241240, 63sseqtr4i 3888 . . . . . . . . 9 (𝑀...𝑛) ⊆ 𝑍
242 resmpt 5747 . . . . . . . . 9 ((𝑀...𝑛) ⊆ 𝑍 → ((𝑚𝑍 ↦ ((𝐺𝑚)‘𝑚)) ↾ (𝑀...𝑛)) = (𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺𝑚)‘𝑚)))
243241, 242ax-mp 5 . . . . . . . 8 ((𝑚𝑍 ↦ ((𝐺𝑚)‘𝑚)) ↾ (𝑀...𝑛)) = (𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺𝑚)‘𝑚))
244239, 243syl6eq 2824 . . . . . . 7 (𝑓 = (𝑚𝑍 ↦ ((𝐺𝑚)‘𝑚)) → (𝑓 ↾ (𝑀...𝑛)) = (𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺𝑚)‘𝑚)))
245244sbceq1d 3680 . . . . . 6 (𝑓 = (𝑚𝑍 ↦ ((𝐺𝑚)‘𝑚)) → ([(𝑓 ↾ (𝑀...𝑛)) / 𝑔]𝜓[(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺𝑚)‘𝑚)) / 𝑔]𝜓))
246238, 245syl5bbr 277 . . . . 5 (𝑓 = (𝑚𝑍 ↦ ((𝐺𝑚)‘𝑚)) → (𝜒[(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺𝑚)‘𝑚)) / 𝑔]𝜓))
247246ralbidv 3141 . . . 4 (𝑓 = (𝑚𝑍 ↦ ((𝐺𝑚)‘𝑚)) → (∀𝑛𝑍 𝜒 ↔ ∀𝑛𝑍 [(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺𝑚)‘𝑚)) / 𝑔]𝜓))
248234, 247anbi12d 621 . . 3 (𝑓 = (𝑚𝑍 ↦ ((𝐺𝑚)‘𝑚)) → ((𝑓:𝑍𝐴 ∧ ∀𝑛𝑍 𝜒) ↔ ((𝑚𝑍 ↦ ((𝐺𝑚)‘𝑚)):𝑍𝐴 ∧ ∀𝑛𝑍 [(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺𝑚)‘𝑚)) / 𝑔]𝜓)))
249233, 248spcev 3519 . 2 (((𝑚𝑍 ↦ ((𝐺𝑚)‘𝑚)):𝑍𝐴 ∧ ∀𝑛𝑍 [(𝑚 ∈ (𝑀...𝑛) ↦ ((𝐺𝑚)‘𝑚)) / 𝑔]𝜓) → ∃𝑓(𝑓:𝑍𝐴 ∧ ∀𝑛𝑍 𝜒))
250221, 232, 249syl2anc 576 1 (𝜑 → ∃𝑓(𝑓:𝑍𝐴 ∧ ∀𝑛𝑍 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wo 833  w3a 1068   = wceq 1507  wex 1742  wnf 1746  wcel 2050  {cab 2752  wral 3082  wrex 3083  Vcvv 3409  [wsbc 3675  wss 3823  {csn 4435  cmpt 5004  dom cdm 5403  cres 5405   Fn wfn 6180  wf 6181  cfv 6185  (class class class)co 6974  cmpo 6976  𝑚 cmap 8204  1c1 10334   + caddc 10336  cz 11791  cuz 12056  ...cfz 12706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-1st 7499  df-2nd 7500  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-er 8087  df-map 8206  df-en 8305  df-dom 8306  df-sdom 8307  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-nn 11438  df-n0 11706  df-z 11792  df-uz 12057  df-fz 12707
This theorem is referenced by:  sdclem1  34489
  Copyright terms: Public domain W3C validator