MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbelx Structured version   Visualization version   GIF version

Theorem sbelx 2249
Description: Elimination of substitution. Also see sbel2x 2474. (Contributed by NM, 5-Aug-1993.) Avoid ax-13 2372. (Revised by Wolf Lammen, 6-Aug-2023.) Avoid ax-10 2139. (Revised by Gino Giotto, 20-Aug-2023.)
Assertion
Ref Expression
sbelx (𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑦]𝜑))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑥
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem sbelx
StepHypRef Expression
1 sbequ12r 2248 . . 3 (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑𝜑))
21equsexvw 2009 . 2 (∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑦]𝜑) ↔ 𝜑)
32bicomi 223 1 (𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑦]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wex 1783  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-sb 2069
This theorem is referenced by:  pm13.196a  41921
  Copyright terms: Public domain W3C validator