MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbequ12r Structured version   Visualization version   GIF version

Theorem sbequ12r 2248
Description: An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
Assertion
Ref Expression
sbequ12r (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑𝜑))

Proof of Theorem sbequ12r
StepHypRef Expression
1 sbequ12 2247 . . 3 (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦]𝜑))
21bicomd 222 . 2 (𝑦 = 𝑥 → ([𝑥 / 𝑦]𝜑𝜑))
32equcoms 2024 1 (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-sb 2069
This theorem is referenced by:  sbelx  2249  sbequ12a  2250  sbid  2251  sbid2vw  2254  sb6rfv  2355  sbbib  2359  sb5rf  2467  sb6rf  2468  2sb5rf  2472  2sb6rf  2473  abbi  2811  opeliunxp  5645  isarep1  6506  findes  7723  axrepndlem1  10279  axrepndlem2  10280  nn0min  31036  esumcvg  31954  bj-sbidmOLD  34961  bj-gabima  35055  wl-nfs1t  35623  wl-sb6rft  35630  wl-equsb4  35639  wl-ax11-lem5  35667  sbcalf  36199  sbcexf  36200  opeliun2xp  45556
  Copyright terms: Public domain W3C validator