| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbequ12r | Structured version Visualization version GIF version | ||
| Description: An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
| Ref | Expression |
|---|---|
| sbequ12r | ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ12 2251 | . . 3 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦]𝜑)) | |
| 2 | 1 | bicomd 223 | . 2 ⊢ (𝑦 = 𝑥 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
| 3 | 2 | equcoms 2019 | 1 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 |
| This theorem is referenced by: sbelx 2253 sbequ12a 2254 sbid 2255 sbcov 2256 sbid2vw 2259 sb6rfv 2359 sbbib 2363 sb5rf 2471 sb6rf 2472 2sb5rf 2476 2sb6rf 2477 abbib 2804 opeliunxp 5721 opeliun2xp 5722 isarep1 6626 isarep1OLD 6627 findes 7896 axrepndlem1 10606 axrepndlem2 10607 nn0min 32799 esumcvg 34117 bj-sbidmOLD 36868 bj-gabima 36958 wl-nfs1t 37555 wl-sbid2ft 37563 wl-equsb4 37575 wl-ax11-lem5 37607 sbcalf 38138 sbcexf 38139 |
| Copyright terms: Public domain | W3C validator |