MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbequ12r Structured version   Visualization version   GIF version

Theorem sbequ12r 2253
Description: An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
Assertion
Ref Expression
sbequ12r (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑𝜑))

Proof of Theorem sbequ12r
StepHypRef Expression
1 sbequ12 2252 . . 3 (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦]𝜑))
21bicomd 223 . 2 (𝑦 = 𝑥 → ([𝑥 / 𝑦]𝜑𝜑))
32equcoms 2020 1 (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  [wsb 2065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066
This theorem is referenced by:  sbelx  2254  sbequ12a  2255  sbid  2256  sbcov  2257  sbid2vw  2260  sb6rfv  2356  sbbib  2360  sb5rf  2466  sb6rf  2467  2sb5rf  2471  2sb6rf  2472  abbib  2799  opeliunxp  5708  opeliun2xp  5709  isarep1  6609  isarep1OLD  6610  findes  7879  axrepndlem1  10552  axrepndlem2  10553  nn0min  32752  esumcvg  34083  bj-sbidmOLD  36845  bj-gabima  36935  wl-nfs1t  37532  wl-sbid2ft  37540  wl-equsb4  37552  wl-ax11-lem5  37584  sbcalf  38115  sbcexf  38116
  Copyright terms: Public domain W3C validator