Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbequ12r | Structured version Visualization version GIF version |
Description: An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
Ref | Expression |
---|---|
sbequ12r | ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ12 2247 | . . 3 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦]𝜑)) | |
2 | 1 | bicomd 222 | . 2 ⊢ (𝑦 = 𝑥 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
3 | 2 | equcoms 2024 | 1 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 |
This theorem is referenced by: sbelx 2249 sbequ12a 2250 sbid 2251 sbid2vw 2254 sb6rfv 2355 sbbib 2359 sb5rf 2467 sb6rf 2468 2sb5rf 2472 2sb6rf 2473 abbi 2811 opeliunxp 5645 isarep1 6506 findes 7723 axrepndlem1 10279 axrepndlem2 10280 nn0min 31036 esumcvg 31954 bj-sbidmOLD 34961 bj-gabima 35055 wl-nfs1t 35623 wl-sb6rft 35630 wl-equsb4 35639 wl-ax11-lem5 35667 sbcalf 36199 sbcexf 36200 opeliun2xp 45556 |
Copyright terms: Public domain | W3C validator |