| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbequ12r | Structured version Visualization version GIF version | ||
| Description: An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
| Ref | Expression |
|---|---|
| sbequ12r | ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ12 2256 | . . 3 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦]𝜑)) | |
| 2 | 1 | bicomd 223 | . 2 ⊢ (𝑦 = 𝑥 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
| 3 | 2 | equcoms 2021 | 1 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2182 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 |
| This theorem is referenced by: sbelx 2258 sbequ12a 2259 sbid 2260 sbcov 2261 sbid2vw 2264 sb6rfv 2359 sbbib 2363 sb5rf 2469 sb6rf 2470 2sb5rf 2474 2sb6rf 2475 abbib 2802 opeliunxp 5688 opeliun2xp 5689 isarep1 6578 findes 7839 axrepndlem1 10494 axrepndlem2 10495 nn0min 32829 esumcvg 34171 bj-sbidmOLD 36967 bj-gabima 37057 wl-nfs1t 37654 wl-sbid2ft 37662 wl-equsb4 37674 sbcalf 38227 sbcexf 38228 |
| Copyright terms: Public domain | W3C validator |