![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbequ12r | Structured version Visualization version GIF version |
Description: An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
Ref | Expression |
---|---|
sbequ12r | ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ12 2242 | . . 3 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦]𝜑)) | |
2 | 1 | bicomd 222 | . 2 ⊢ (𝑦 = 𝑥 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
3 | 2 | equcoms 2022 | 1 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 [wsb 2066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-12 2170 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 df-sb 2067 |
This theorem is referenced by: sbelx 2244 sbequ12a 2245 sbid 2246 sbid2vw 2249 sb6rfv 2352 sbbib 2356 sb5rf 2465 sb6rf 2466 2sb5rf 2470 2sb6rf 2471 abbib 2803 opeliunxp 5743 isarep1 6637 isarep1OLD 6638 findes 7897 axrepndlem1 10591 axrepndlem2 10592 nn0min 32294 esumcvg 33383 bj-sbidmOLD 36033 bj-gabima 36124 wl-nfs1t 36710 wl-sb6rft 36717 wl-equsb4 36726 wl-ax11-lem5 36755 sbcalf 37286 sbcexf 37287 opeliun2xp 47097 |
Copyright terms: Public domain | W3C validator |