![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbequ12r | Structured version Visualization version GIF version |
Description: An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
Ref | Expression |
---|---|
sbequ12r | ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ12 2218 | . . 3 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦]𝜑)) | |
2 | 1 | bicomd 224 | . 2 ⊢ (𝑦 = 𝑥 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
3 | 2 | equcoms 2008 | 1 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 [wsb 2044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-12 2143 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1766 df-sb 2045 |
This theorem is referenced by: sbelx 2220 sbequ12a 2221 sbid 2222 sb6rfv 2335 sbbib 2339 sb5rf 2449 sb6rf 2450 2sb5rf 2455 2sb6rf 2456 2sb6rfOLD 2457 opeliunxp 5512 isarep1 6319 findes 7475 axrepndlem1 9867 axrepndlem2 9868 nn0min 30217 esumcvg 30958 bj-abbi 33698 bj-sbidmOLD 33750 wl-nfs1t 34330 wl-sb6rft 34337 wl-equsb4 34345 wl-ax11-lem5 34373 sbcalf 34945 sbcexf 34946 opeliun2xp 43881 |
Copyright terms: Public domain | W3C validator |