| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbequ12r | Structured version Visualization version GIF version | ||
| Description: An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
| Ref | Expression |
|---|---|
| sbequ12r | ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ12 2252 | . . 3 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦]𝜑)) | |
| 2 | 1 | bicomd 223 | . 2 ⊢ (𝑦 = 𝑥 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
| 3 | 2 | equcoms 2020 | 1 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 |
| This theorem is referenced by: sbelx 2254 sbequ12a 2255 sbid 2256 sbcov 2257 sbid2vw 2260 sb6rfv 2356 sbbib 2360 sb5rf 2466 sb6rf 2467 2sb5rf 2471 2sb6rf 2472 abbib 2799 opeliunxp 5708 opeliun2xp 5709 isarep1 6609 isarep1OLD 6610 findes 7879 axrepndlem1 10552 axrepndlem2 10553 nn0min 32752 esumcvg 34083 bj-sbidmOLD 36845 bj-gabima 36935 wl-nfs1t 37532 wl-sbid2ft 37540 wl-equsb4 37552 wl-ax11-lem5 37584 sbcalf 38115 sbcexf 38116 |
| Copyright terms: Public domain | W3C validator |