| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbequ12r | Structured version Visualization version GIF version | ||
| Description: An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
| Ref | Expression |
|---|---|
| sbequ12r | ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ12 2252 | . . 3 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦]𝜑)) | |
| 2 | 1 | bicomd 223 | . 2 ⊢ (𝑦 = 𝑥 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
| 3 | 2 | equcoms 2020 | 1 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 |
| This theorem is referenced by: sbelx 2254 sbequ12a 2255 sbid 2256 sbcov 2257 sbid2vw 2260 sb6rfv 2355 sbbib 2359 sb5rf 2465 sb6rf 2466 2sb5rf 2470 2sb6rf 2471 abbib 2798 opeliunxp 5705 opeliun2xp 5706 isarep1 6606 isarep1OLD 6607 findes 7876 axrepndlem1 10545 axrepndlem2 10546 nn0min 32745 esumcvg 34076 bj-sbidmOLD 36838 bj-gabima 36928 wl-nfs1t 37525 wl-sbid2ft 37533 wl-equsb4 37545 wl-ax11-lem5 37577 sbcalf 38108 sbcexf 38109 |
| Copyright terms: Public domain | W3C validator |