MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbequ12r Structured version   Visualization version   GIF version

Theorem sbequ12r 2250
Description: An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
Assertion
Ref Expression
sbequ12r (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑𝜑))

Proof of Theorem sbequ12r
StepHypRef Expression
1 sbequ12 2249 . . 3 (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦]𝜑))
21bicomd 226 . 2 (𝑦 = 𝑥 → ([𝑥 / 𝑦]𝜑𝜑))
32equcoms 2028 1 (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  [wsb 2070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-12 2175
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1788  df-sb 2071
This theorem is referenced by:  sbelx  2251  sbequ12a  2252  sbid  2253  sbid2vw  2256  sb6rfv  2356  sbbib  2360  sb5rf  2466  sb6rf  2467  2sb5rf  2471  2sb6rf  2472  abbi  2810  opeliunxp  5616  isarep1  6468  findes  7680  axrepndlem1  10206  axrepndlem2  10207  nn0min  30854  esumcvg  31766  bj-sbidmOLD  34771  bj-gabima  34865  wl-nfs1t  35433  wl-sb6rft  35440  wl-equsb4  35449  wl-ax11-lem5  35477  sbcalf  36009  sbcexf  36010  opeliun2xp  45341
  Copyright terms: Public domain W3C validator