Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbequ12r | Structured version Visualization version GIF version |
Description: An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
Ref | Expression |
---|---|
sbequ12r | ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ12 2243 | . . 3 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦]𝜑)) | |
2 | 1 | bicomd 222 | . 2 ⊢ (𝑦 = 𝑥 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
3 | 2 | equcoms 2022 | 1 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 [wsb 2066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-12 2170 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-sb 2067 |
This theorem is referenced by: sbelx 2245 sbequ12a 2246 sbid 2247 sbid2vw 2250 sb6rfv 2354 sbbib 2358 sb5rf 2466 sb6rf 2467 2sb5rf 2471 2sb6rf 2472 abbi 2809 opeliunxp 5673 isarep1 6560 isarep1OLD 6561 findes 7796 axrepndlem1 10428 axrepndlem2 10429 nn0min 31269 esumcvg 32194 bj-sbidmOLD 35107 bj-gabima 35201 wl-nfs1t 35768 wl-sb6rft 35775 wl-equsb4 35784 wl-ax11-lem5 35812 sbcalf 36344 sbcexf 36345 opeliun2xp 45933 |
Copyright terms: Public domain | W3C validator |