| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbequ12r | Structured version Visualization version GIF version | ||
| Description: An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
| Ref | Expression |
|---|---|
| sbequ12r | ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ12 2254 | . . 3 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦]𝜑)) | |
| 2 | 1 | bicomd 223 | . 2 ⊢ (𝑦 = 𝑥 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
| 3 | 2 | equcoms 2021 | 1 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 |
| This theorem is referenced by: sbelx 2256 sbequ12a 2257 sbid 2258 sbcov 2259 sbid2vw 2262 sb6rfv 2357 sbbib 2361 sb5rf 2467 sb6rf 2468 2sb5rf 2472 2sb6rf 2473 abbib 2800 opeliunxp 5678 opeliun2xp 5679 isarep1 6565 findes 7825 axrepndlem1 10478 axrepndlem2 10479 nn0min 32795 esumcvg 34091 bj-sbidmOLD 36884 bj-gabima 36974 wl-nfs1t 37571 wl-sbid2ft 37579 wl-equsb4 37591 wl-ax11-lem5 37623 sbcalf 38154 sbcexf 38155 |
| Copyright terms: Public domain | W3C validator |