Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbequ12r | Structured version Visualization version GIF version |
Description: An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
Ref | Expression |
---|---|
sbequ12r | ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ12 2244 | . . 3 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦]𝜑)) | |
2 | 1 | bicomd 222 | . 2 ⊢ (𝑦 = 𝑥 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
3 | 2 | equcoms 2023 | 1 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 |
This theorem is referenced by: sbelx 2246 sbequ12a 2247 sbid 2248 sbid2vw 2251 sb6rfv 2355 sbbib 2359 sb5rf 2467 sb6rf 2468 2sb5rf 2472 2sb6rf 2473 abbi 2810 opeliunxp 5654 isarep1 6522 findes 7749 axrepndlem1 10348 axrepndlem2 10349 nn0min 31134 esumcvg 32054 bj-sbidmOLD 35034 bj-gabima 35128 wl-nfs1t 35696 wl-sb6rft 35703 wl-equsb4 35712 wl-ax11-lem5 35740 sbcalf 36272 sbcexf 36273 opeliun2xp 45668 |
Copyright terms: Public domain | W3C validator |