![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbequ12r | Structured version Visualization version GIF version |
Description: An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
Ref | Expression |
---|---|
sbequ12r | ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ12 2241 | . . 3 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦]𝜑)) | |
2 | 1 | bicomd 222 | . 2 ⊢ (𝑦 = 𝑥 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
3 | 2 | equcoms 2021 | 1 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 [wsb 2065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-12 2169 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-sb 2066 |
This theorem is referenced by: sbelx 2243 sbequ12a 2244 sbid 2245 sbid2vw 2248 sb6rfv 2351 sbbib 2355 sb5rf 2464 sb6rf 2465 2sb5rf 2469 2sb6rf 2470 abbib 2802 opeliunxp 5742 isarep1 6636 isarep1OLD 6637 findes 7895 axrepndlem1 10589 axrepndlem2 10590 nn0min 32293 esumcvg 33382 bj-sbidmOLD 36032 bj-gabima 36123 wl-nfs1t 36709 wl-sb6rft 36716 wl-equsb4 36725 wl-ax11-lem5 36754 sbcalf 37285 sbcexf 37286 opeliun2xp 47096 |
Copyright terms: Public domain | W3C validator |