![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbequ12r | Structured version Visualization version GIF version |
Description: An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
Ref | Expression |
---|---|
sbequ12r | ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ12 2249 | . . 3 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦]𝜑)) | |
2 | 1 | bicomd 223 | . 2 ⊢ (𝑦 = 𝑥 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
3 | 2 | equcoms 2017 | 1 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 [wsb 2062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-12 2175 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 |
This theorem is referenced by: sbelx 2251 sbequ12a 2252 sbid 2253 sbcov 2254 sbid2vw 2257 sb6rfv 2358 sbbib 2362 sb5rf 2470 sb6rf 2471 2sb5rf 2475 2sb6rf 2476 abbib 2809 opeliunxp 5756 isarep1 6657 isarep1OLD 6658 findes 7923 axrepndlem1 10630 axrepndlem2 10631 nn0min 32827 esumcvg 34067 bj-sbidmOLD 36833 bj-gabima 36923 wl-nfs1t 37518 wl-sbid2ft 37526 wl-equsb4 37538 wl-ax11-lem5 37570 sbcalf 38101 sbcexf 38102 opeliun2xp 48178 |
Copyright terms: Public domain | W3C validator |