| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbel2x | Structured version Visualization version GIF version | ||
| Description: Elimination of double substitution. Usage of this theorem is discouraged because it depends on ax-13 2377. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 29-Sep-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sbel2x | ⊢ (𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfv 1914 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 1, 2 | 2sb5rf 2477 | . 2 ⊢ (𝜑 ↔ ∃𝑦∃𝑥((𝑦 = 𝑤 ∧ 𝑥 = 𝑧) ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑)) |
| 4 | ancom 460 | . . . 4 ⊢ ((𝑦 = 𝑤 ∧ 𝑥 = 𝑧) ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) | |
| 5 | 4 | anbi1i 624 | . . 3 ⊢ (((𝑦 = 𝑤 ∧ 𝑥 = 𝑧) ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑) ↔ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑)) |
| 6 | 5 | 2exbii 1849 | . 2 ⊢ (∃𝑦∃𝑥((𝑦 = 𝑤 ∧ 𝑥 = 𝑧) ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑) ↔ ∃𝑦∃𝑥((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑)) |
| 7 | excom 2162 | . 2 ⊢ (∃𝑦∃𝑥((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑) ↔ ∃𝑥∃𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑)) | |
| 8 | 3, 6, 7 | 3bitri 297 | 1 ⊢ (𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2377 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |