Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbel2x | Structured version Visualization version GIF version |
Description: Elimination of double substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 29-Sep-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sbel2x | ⊢ (𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | nfv 1917 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
3 | 1, 2 | 2sb5rf 2472 | . 2 ⊢ (𝜑 ↔ ∃𝑦∃𝑥((𝑦 = 𝑤 ∧ 𝑥 = 𝑧) ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑)) |
4 | ancom 461 | . . . 4 ⊢ ((𝑦 = 𝑤 ∧ 𝑥 = 𝑧) ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) | |
5 | 4 | anbi1i 624 | . . 3 ⊢ (((𝑦 = 𝑤 ∧ 𝑥 = 𝑧) ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑) ↔ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑)) |
6 | 5 | 2exbii 1851 | . 2 ⊢ (∃𝑦∃𝑥((𝑦 = 𝑤 ∧ 𝑥 = 𝑧) ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑) ↔ ∃𝑦∃𝑥((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑)) |
7 | excom 2162 | . 2 ⊢ (∃𝑦∃𝑥((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑) ↔ ∃𝑥∃𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑)) | |
8 | 3, 6, 7 | 3bitri 297 | 1 ⊢ (𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1782 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |