| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pm13.196a | Structured version Visualization version GIF version | ||
| Description: Theorem *13.196 in [WhiteheadRussell] p. 179. The only difference is the position of the substituted variable. (Contributed by Andrew Salmon, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| pm13.196a | ⊢ (¬ 𝜑 ↔ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑦 ≠ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbelx 2252 | . 2 ⊢ (¬ 𝜑 ↔ ∃𝑦(𝑦 = 𝑥 ∧ [𝑦 / 𝑥] ¬ 𝜑)) | |
| 2 | sbalex 2241 | . 2 ⊢ (∃𝑦(𝑦 = 𝑥 ∧ [𝑦 / 𝑥] ¬ 𝜑) ↔ ∀𝑦(𝑦 = 𝑥 → [𝑦 / 𝑥] ¬ 𝜑)) | |
| 3 | sbn 2279 | . . . . 5 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) | |
| 4 | 3 | imbi2i 336 | . . . 4 ⊢ ((𝑦 = 𝑥 → [𝑦 / 𝑥] ¬ 𝜑) ↔ (𝑦 = 𝑥 → ¬ [𝑦 / 𝑥]𝜑)) |
| 5 | con2b 359 | . . . 4 ⊢ ((𝑦 = 𝑥 → ¬ [𝑦 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑 → ¬ 𝑦 = 𝑥)) | |
| 6 | df-ne 2940 | . . . . . 6 ⊢ (𝑦 ≠ 𝑥 ↔ ¬ 𝑦 = 𝑥) | |
| 7 | 6 | bicomi 224 | . . . . 5 ⊢ (¬ 𝑦 = 𝑥 ↔ 𝑦 ≠ 𝑥) |
| 8 | 7 | imbi2i 336 | . . . 4 ⊢ (([𝑦 / 𝑥]𝜑 → ¬ 𝑦 = 𝑥) ↔ ([𝑦 / 𝑥]𝜑 → 𝑦 ≠ 𝑥)) |
| 9 | 4, 5, 8 | 3bitri 297 | . . 3 ⊢ ((𝑦 = 𝑥 → [𝑦 / 𝑥] ¬ 𝜑) ↔ ([𝑦 / 𝑥]𝜑 → 𝑦 ≠ 𝑥)) |
| 10 | 9 | albii 1818 | . 2 ⊢ (∀𝑦(𝑦 = 𝑥 → [𝑦 / 𝑥] ¬ 𝜑) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑦 ≠ 𝑥)) |
| 11 | 1, 2, 10 | 3bitri 297 | 1 ⊢ (¬ 𝜑 ↔ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑦 ≠ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 ∃wex 1778 [wsb 2063 ≠ wne 2939 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-nf 1783 df-sb 2064 df-ne 2940 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |