| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sbequbidv | Structured version Visualization version GIF version | ||
| Description: Deduction substituting both sides of a biconditional. (Contributed by GG, 1-Sep-2025.) |
| Ref | Expression |
|---|---|
| sbequbidv.1 | ⊢ (𝜑 → 𝑢 = 𝑣) |
| sbequbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| sbequbidv | ⊢ (𝜑 → ([𝑢 / 𝑥]𝜓 ↔ [𝑣 / 𝑥]𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequbidv.1 | . . . . 5 ⊢ (𝜑 → 𝑢 = 𝑣) | |
| 2 | equequ2 2024 | . . . . 5 ⊢ (𝑢 = 𝑣 → (𝑡 = 𝑢 ↔ 𝑡 = 𝑣)) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑡 = 𝑢 ↔ 𝑡 = 𝑣)) |
| 4 | sbequbidv.2 | . . . . . 6 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 5 | 4 | imbi2d 340 | . . . . 5 ⊢ (𝜑 → ((𝑥 = 𝑡 → 𝜓) ↔ (𝑥 = 𝑡 → 𝜒))) |
| 6 | 5 | albidv 1919 | . . . 4 ⊢ (𝜑 → (∀𝑥(𝑥 = 𝑡 → 𝜓) ↔ ∀𝑥(𝑥 = 𝑡 → 𝜒))) |
| 7 | 3, 6 | imbi12d 344 | . . 3 ⊢ (𝜑 → ((𝑡 = 𝑢 → ∀𝑥(𝑥 = 𝑡 → 𝜓)) ↔ (𝑡 = 𝑣 → ∀𝑥(𝑥 = 𝑡 → 𝜒)))) |
| 8 | 7 | albidv 1919 | . 2 ⊢ (𝜑 → (∀𝑡(𝑡 = 𝑢 → ∀𝑥(𝑥 = 𝑡 → 𝜓)) ↔ ∀𝑡(𝑡 = 𝑣 → ∀𝑥(𝑥 = 𝑡 → 𝜒)))) |
| 9 | df-sb 2064 | . 2 ⊢ ([𝑢 / 𝑥]𝜓 ↔ ∀𝑡(𝑡 = 𝑢 → ∀𝑥(𝑥 = 𝑡 → 𝜓))) | |
| 10 | df-sb 2064 | . 2 ⊢ ([𝑣 / 𝑥]𝜒 ↔ ∀𝑡(𝑡 = 𝑣 → ∀𝑥(𝑥 = 𝑡 → 𝜒))) | |
| 11 | 8, 9, 10 | 3bitr4g 314 | 1 ⊢ (𝜑 → ([𝑢 / 𝑥]𝜓 ↔ [𝑣 / 𝑥]𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 [wsb 2063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |