Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equequ2 | Structured version Visualization version GIF version |
Description: An equivalence law for equality. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 4-Aug-2017.) (Proof shortened by BJ, 12-Apr-2021.) |
Ref | Expression |
---|---|
equequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equtrr 2026 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 → 𝑧 = 𝑦)) | |
2 | equeuclr 2027 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑦 → 𝑧 = 𝑥)) | |
3 | 1, 2 | impbid 211 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: sbjust 2067 sbequ 2087 sb6 2089 equsb3r 2104 ax13lem2 2376 dveeq2ALT 2454 sb4b 2475 sb4bOLD 2476 mojust 2539 mof 2563 eujust 2571 eujustALT 2572 eu6lem 2573 euf 2576 eleq1w 2821 mo2icl 3644 disjxun 5068 axrep2 5208 dtru 5288 zfpair 5339 dfid3 5483 solin 5519 isso2i 5529 iotaval 6392 dff13f 7110 dfwe2 7602 aceq0 9805 zfac 10147 axpowndlem4 10287 zfcndac 10306 injresinj 13436 infpn2 16542 ramub1lem2 16656 fullestrcsetc 17784 fullsetcestrc 17799 symgextf1 18944 mplcoe1 21148 evlslem2 21199 mamulid 21498 mamurid 21499 mdetdiagid 21657 dscmet 23634 lgseisenlem2 26429 dchrisumlem3 26544 frgr2wwlk1 28594 poxp2 33717 poxp3 33723 bj-ssblem1 34762 bj-ssblem2 34763 bj-ax12 34765 bj-dtru 34926 wl-aleq 35621 wl-mo2df 35652 wl-eudf 35654 wl-euequf 35656 wl-mo2t 35657 dveeq2-o 36874 axc11n-16 36879 ax12eq 36882 ax12inda 36889 ax12v2-o 36890 fsuppind 40202 fphpd 40554 iotavalb 41937 disjinfi 42620 eusnsn 44407 fcoresf1 44450 2reu8i 44492 2reuimp0 44493 ichexmpl1 44809 |
Copyright terms: Public domain | W3C validator |