![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equequ2 | Structured version Visualization version GIF version |
Description: An equivalence law for equality. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 4-Aug-2017.) (Proof shortened by BJ, 12-Apr-2021.) |
Ref | Expression |
---|---|
equequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equtrr 2021 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 → 𝑧 = 𝑦)) | |
2 | equeuclr 2022 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑦 → 𝑧 = 𝑥)) | |
3 | 1, 2 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 |
This theorem is referenced by: sbjust 2063 sbequ 2083 sb6 2085 equsb3r 2104 ax13lem2 2384 dveeq2ALT 2462 sb4b 2483 mojust 2542 mof 2566 eujust 2574 eujustALT 2575 eu6lem 2576 euf 2579 eleq1w 2827 mo2icl 3736 disjxun 5164 axrep2 5306 dtruALT2 5388 zfpair 5439 dtruOLD 5461 dfid3 5596 solin 5634 isso2i 5644 iotavalOLD 6547 dff13f 7293 dfwe2 7809 poxp2 8184 poxp3 8191 aceq0 10187 zfac 10529 axpowndlem4 10669 zfcndac 10688 injresinj 13838 infpn2 16960 ramub1lem2 17074 fullestrcsetc 18220 fullsetcestrc 18235 symgextf1 19463 mplcoe1 22078 evlslem2 22126 mamulid 22468 mamurid 22469 mdetdiagid 22627 dscmet 24606 lgseisenlem2 27438 dchrisumlem3 27553 frgr2wwlk1 30361 sbequbidv 36180 cbvsbdavw2 36221 bj-ssblem1 36620 bj-ssblem2 36621 bj-ax12 36623 wl-aleq 37489 wl-mo2df 37524 wl-eudf 37526 wl-euequf 37528 wl-mo2t 37529 dveeq2-o 38889 axc11n-16 38894 ax12eq 38897 ax12inda 38904 ax12v2-o 38905 aks6d1c6lem3 42129 fsuppind 42545 eu6w 42631 fphpd 42772 iotavalb 44399 disjinfi 45099 eusnsn 46941 fcoresf1 46984 2reu8i 47028 2reuimp0 47029 ichexmpl1 47343 |
Copyright terms: Public domain | W3C validator |