Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equequ2 | Structured version Visualization version GIF version |
Description: An equivalence law for equality. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 4-Aug-2017.) (Proof shortened by BJ, 12-Apr-2021.) |
Ref | Expression |
---|---|
equequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equtrr 2028 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 → 𝑧 = 𝑦)) | |
2 | equeuclr 2029 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑦 → 𝑧 = 𝑥)) | |
3 | 1, 2 | impbid 211 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 |
This theorem is referenced by: sbjust 2069 sbequ 2089 sb6 2091 equsb3r 2105 ax13lem2 2377 dveeq2ALT 2455 sb4b 2476 sb4bOLD 2477 mojust 2540 mof 2564 eujust 2572 eujustALT 2573 eu6lem 2574 euf 2577 eleq1w 2822 mo2icl 3652 disjxun 5076 axrep2 5216 dtru 5296 zfpair 5347 dfid3 5491 solin 5527 isso2i 5537 iotaval 6404 dff13f 7123 dfwe2 7615 aceq0 9858 zfac 10200 axpowndlem4 10340 zfcndac 10359 injresinj 13489 infpn2 16595 ramub1lem2 16709 fullestrcsetc 17849 fullsetcestrc 17864 symgextf1 19010 mplcoe1 21219 evlslem2 21270 mamulid 21571 mamurid 21572 mdetdiagid 21730 dscmet 23709 lgseisenlem2 26505 dchrisumlem3 26620 frgr2wwlk1 28672 poxp2 33769 poxp3 33775 bj-ssblem1 34814 bj-ssblem2 34815 bj-ax12 34817 bj-dtru 34978 wl-aleq 35673 wl-mo2df 35704 wl-eudf 35706 wl-euequf 35708 wl-mo2t 35709 dveeq2-o 36926 axc11n-16 36931 ax12eq 36934 ax12inda 36941 ax12v2-o 36942 fsuppind 40259 fphpd 40618 iotavalb 42001 disjinfi 42684 eusnsn 44471 fcoresf1 44514 2reu8i 44556 2reuimp0 44557 ichexmpl1 44873 |
Copyright terms: Public domain | W3C validator |