![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equequ2 | Structured version Visualization version GIF version |
Description: An equivalence law for equality. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 4-Aug-2017.) (Proof shortened by BJ, 12-Apr-2021.) |
Ref | Expression |
---|---|
equequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equtrr 2025 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 → 𝑧 = 𝑦)) | |
2 | equeuclr 2026 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑦 → 𝑧 = 𝑥)) | |
3 | 1, 2 | impbid 211 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 |
This theorem is referenced by: sbjust 2066 sbequ 2086 sb6 2088 equsb3r 2102 ax13lem2 2375 dveeq2ALT 2453 sb4b 2474 mojust 2533 mof 2557 eujust 2565 eujustALT 2566 eu6lem 2567 euf 2570 eleq1w 2816 mo2icl 3709 disjxun 5145 axrep2 5287 dtruALT2 5367 zfpair 5418 dtruOLD 5440 dfid3 5576 solin 5612 isso2i 5622 iotavalOLD 6514 dff13f 7251 dfwe2 7757 poxp2 8125 poxp3 8132 aceq0 10109 zfac 10451 axpowndlem4 10591 zfcndac 10610 injresinj 13749 infpn2 16842 ramub1lem2 16956 fullestrcsetc 18099 fullsetcestrc 18114 symgextf1 19283 mplcoe1 21583 evlslem2 21633 mamulid 21934 mamurid 21935 mdetdiagid 22093 dscmet 24072 lgseisenlem2 26868 dchrisumlem3 26983 frgr2wwlk1 29571 bj-ssblem1 35519 bj-ssblem2 35520 bj-ax12 35522 wl-aleq 36392 wl-mo2df 36423 wl-eudf 36425 wl-euequf 36427 wl-mo2t 36428 dveeq2-o 37791 axc11n-16 37796 ax12eq 37799 ax12inda 37806 ax12v2-o 37807 fsuppind 41159 fphpd 41539 iotavalb 43174 disjinfi 43876 eusnsn 45722 fcoresf1 45765 2reu8i 45807 2reuimp0 45808 ichexmpl1 46123 |
Copyright terms: Public domain | W3C validator |