| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equequ2 | Structured version Visualization version GIF version | ||
| Description: An equivalence law for equality. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 4-Aug-2017.) (Proof shortened by BJ, 12-Apr-2021.) |
| Ref | Expression |
|---|---|
| equequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equtrr 2022 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 → 𝑧 = 𝑦)) | |
| 2 | equeuclr 2023 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑦 → 𝑧 = 𝑥)) | |
| 3 | 1, 2 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: sbjust 2064 sbequ 2084 sb6 2086 equsb3r 2105 ax13lem2 2374 dveeq2ALT 2452 sb4b 2473 mojust 2532 mof 2556 eujust 2564 eujustALT 2565 eu6lem 2566 euf 2569 eleq1w 2811 mo2icl 3685 disjxun 5105 axrep2 5237 dtruALT2 5325 zfpair 5376 dtruOLD 5401 dfid3 5536 solin 5573 isso2i 5583 iotavalOLD 6485 dff13f 7230 dfwe2 7750 poxp2 8122 poxp3 8129 aceq0 10071 zfac 10413 axpowndlem4 10553 zfcndac 10572 injresinj 13749 infpn2 16884 ramub1lem2 16998 fullestrcsetc 18112 fullsetcestrc 18127 symgextf1 19351 mplcoe1 21944 evlslem2 21986 mamulid 22328 mamurid 22329 mdetdiagid 22487 dscmet 24460 lgseisenlem2 27287 dchrisumlem3 27402 frgr2wwlk1 30258 sbequbidv 36202 cbvsbdavw2 36243 bj-ssblem1 36642 bj-ssblem2 36643 bj-ax12 36645 wl-aleq 37523 wl-mo2df 37558 wl-eudf 37560 wl-euequf 37562 wl-mo2t 37563 dveeq2-o 38926 axc11n-16 38931 ax12eq 38934 ax12inda 38941 ax12v2-o 38942 aks6d1c6lem3 42160 fsuppind 42578 eu6w 42664 fphpd 42804 iotavalb 44419 disjinfi 45186 eusnsn 47027 fcoresf1 47070 2reu8i 47114 2reuimp0 47115 ichexmpl1 47470 |
| Copyright terms: Public domain | W3C validator |