![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equequ2 | Structured version Visualization version GIF version |
Description: An equivalence law for equality. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 4-Aug-2017.) (Proof shortened by BJ, 12-Apr-2021.) |
Ref | Expression |
---|---|
equequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equtrr 2025 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 → 𝑧 = 𝑦)) | |
2 | equeuclr 2026 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑦 → 𝑧 = 𝑥)) | |
3 | 1, 2 | impbid 211 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 |
This theorem is referenced by: sbjust 2066 sbequ 2086 sb6 2088 equsb3r 2102 ax13lem2 2375 dveeq2ALT 2453 sb4b 2474 mojust 2533 mof 2557 eujust 2565 eujustALT 2566 eu6lem 2567 euf 2570 eleq1w 2816 mo2icl 3710 disjxun 5146 axrep2 5288 dtruALT2 5368 zfpair 5419 dtruOLD 5441 dfid3 5577 solin 5613 isso2i 5623 iotavalOLD 6517 dff13f 7257 dfwe2 7763 poxp2 8131 poxp3 8138 aceq0 10115 zfac 10457 axpowndlem4 10597 zfcndac 10616 injresinj 13757 infpn2 16850 ramub1lem2 16964 fullestrcsetc 18107 fullsetcestrc 18122 symgextf1 19330 mplcoe1 21811 evlslem2 21861 mamulid 22163 mamurid 22164 mdetdiagid 22322 dscmet 24301 lgseisenlem2 27103 dchrisumlem3 27218 frgr2wwlk1 29837 bj-ssblem1 35834 bj-ssblem2 35835 bj-ax12 35837 wl-aleq 36707 wl-mo2df 36738 wl-eudf 36740 wl-euequf 36742 wl-mo2t 36743 dveeq2-o 38106 axc11n-16 38111 ax12eq 38114 ax12inda 38121 ax12v2-o 38122 fsuppind 41464 fphpd 41856 iotavalb 43491 disjinfi 44190 eusnsn 46035 fcoresf1 46078 2reu8i 46120 2reuimp0 46121 ichexmpl1 46436 |
Copyright terms: Public domain | W3C validator |