![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equequ2 | Structured version Visualization version GIF version |
Description: An equivalence law for equality. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 4-Aug-2017.) (Proof shortened by BJ, 12-Apr-2021.) |
Ref | Expression |
---|---|
equequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equtrr 2018 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 → 𝑧 = 𝑦)) | |
2 | equeuclr 2019 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑦 → 𝑧 = 𝑥)) | |
3 | 1, 2 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 |
This theorem is referenced by: sbjust 2060 sbequ 2080 sb6 2082 equsb3r 2101 ax13lem2 2378 dveeq2ALT 2456 sb4b 2477 mojust 2536 mof 2560 eujust 2568 eujustALT 2569 eu6lem 2570 euf 2573 eleq1w 2821 mo2icl 3722 disjxun 5145 axrep2 5287 dtruALT2 5375 zfpair 5426 dtruOLD 5451 dfid3 5585 solin 5622 isso2i 5632 iotavalOLD 6536 dff13f 7275 dfwe2 7792 poxp2 8166 poxp3 8173 aceq0 10155 zfac 10497 axpowndlem4 10637 zfcndac 10656 injresinj 13823 infpn2 16946 ramub1lem2 17060 fullestrcsetc 18206 fullsetcestrc 18221 symgextf1 19453 mplcoe1 22072 evlslem2 22120 mamulid 22462 mamurid 22463 mdetdiagid 22621 dscmet 24600 lgseisenlem2 27434 dchrisumlem3 27549 frgr2wwlk1 30357 sbequbidv 36196 cbvsbdavw2 36237 bj-ssblem1 36636 bj-ssblem2 36637 bj-ax12 36639 wl-aleq 37515 wl-mo2df 37550 wl-eudf 37552 wl-euequf 37554 wl-mo2t 37555 dveeq2-o 38914 axc11n-16 38919 ax12eq 38922 ax12inda 38929 ax12v2-o 38930 aks6d1c6lem3 42153 fsuppind 42576 eu6w 42662 fphpd 42803 iotavalb 44425 disjinfi 45134 eusnsn 46975 fcoresf1 47018 2reu8i 47062 2reuimp0 47063 ichexmpl1 47393 |
Copyright terms: Public domain | W3C validator |