| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equequ2 | Structured version Visualization version GIF version | ||
| Description: An equivalence law for equality. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 4-Aug-2017.) (Proof shortened by BJ, 12-Apr-2021.) |
| Ref | Expression |
|---|---|
| equequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equtrr 2023 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 → 𝑧 = 𝑦)) | |
| 2 | equeuclr 2024 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑦 → 𝑧 = 𝑥)) | |
| 3 | 1, 2 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 |
| This theorem is referenced by: sbjust 2066 sbequ 2086 sb6 2088 equsb3r 2107 ax13lem2 2376 dveeq2ALT 2454 sb4b 2475 mojust 2534 mof 2558 eujust 2566 eujustALT 2567 eu6lem 2568 euf 2571 eleq1w 2814 mo2icl 3668 disjxun 5084 axrep2 5215 dtruALT2 5303 zfpair 5354 dfid3 5509 solin 5546 isso2i 5556 dff13f 7184 dfwe2 7702 poxp2 8068 poxp3 8075 aceq0 10004 zfac 10346 axpowndlem4 10486 zfcndac 10505 injresinj 13686 infpn2 16820 ramub1lem2 16934 fullestrcsetc 18052 fullsetcestrc 18067 symgextf1 19328 mplcoe1 21967 evlslem2 22009 mamulid 22351 mamurid 22352 mdetdiagid 22510 dscmet 24482 lgseisenlem2 27309 dchrisumlem3 27424 frgr2wwlk1 30301 sbequbidv 36248 cbvsbdavw2 36289 bj-ssblem1 36688 bj-ssblem2 36689 bj-ax12 36691 wl-aleq 37569 wl-mo2df 37604 wl-eudf 37606 wl-euequf 37608 wl-mo2t 37609 dveeq2-o 38972 axc11n-16 38977 ax12eq 38980 ax12inda 38987 ax12v2-o 38988 aks6d1c6lem3 42205 fsuppind 42623 eu6w 42709 fphpd 42849 iotavalb 44463 disjinfi 45229 eusnsn 47057 fcoresf1 47100 2reu8i 47144 2reuimp0 47145 ichexmpl1 47500 |
| Copyright terms: Public domain | W3C validator |