| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equequ2 | Structured version Visualization version GIF version | ||
| Description: An equivalence law for equality. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 4-Aug-2017.) (Proof shortened by BJ, 12-Apr-2021.) |
| Ref | Expression |
|---|---|
| equequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equtrr 2022 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 → 𝑧 = 𝑦)) | |
| 2 | equeuclr 2023 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑦 → 𝑧 = 𝑥)) | |
| 3 | 1, 2 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: sbjust 2064 sbequ 2084 sb6 2086 equsb3r 2105 ax13lem2 2374 dveeq2ALT 2452 sb4b 2473 mojust 2532 mof 2556 eujust 2564 eujustALT 2565 eu6lem 2566 euf 2569 eleq1w 2811 mo2icl 3674 disjxun 5090 axrep2 5221 dtruALT2 5309 zfpair 5360 dfid3 5517 solin 5554 isso2i 5564 dff13f 7192 dfwe2 7710 poxp2 8076 poxp3 8083 aceq0 10012 zfac 10354 axpowndlem4 10494 zfcndac 10513 injresinj 13691 infpn2 16825 ramub1lem2 16939 fullestrcsetc 18057 fullsetcestrc 18072 symgextf1 19300 mplcoe1 21942 evlslem2 21984 mamulid 22326 mamurid 22327 mdetdiagid 22485 dscmet 24458 lgseisenlem2 27285 dchrisumlem3 27400 frgr2wwlk1 30273 sbequbidv 36188 cbvsbdavw2 36229 bj-ssblem1 36628 bj-ssblem2 36629 bj-ax12 36631 wl-aleq 37509 wl-mo2df 37544 wl-eudf 37546 wl-euequf 37548 wl-mo2t 37549 dveeq2-o 38912 axc11n-16 38917 ax12eq 38920 ax12inda 38927 ax12v2-o 38928 aks6d1c6lem3 42145 fsuppind 42563 eu6w 42649 fphpd 42789 iotavalb 44403 disjinfi 45170 eusnsn 47010 fcoresf1 47053 2reu8i 47097 2reuimp0 47098 ichexmpl1 47453 |
| Copyright terms: Public domain | W3C validator |