| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equequ2 | Structured version Visualization version GIF version | ||
| Description: An equivalence law for equality. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 4-Aug-2017.) (Proof shortened by BJ, 12-Apr-2021.) |
| Ref | Expression |
|---|---|
| equequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equtrr 2021 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 → 𝑧 = 𝑦)) | |
| 2 | equeuclr 2022 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑦 → 𝑧 = 𝑥)) | |
| 3 | 1, 2 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: sbjust 2063 sbequ 2083 sb6 2085 equsb3r 2104 ax13lem2 2380 dveeq2ALT 2458 sb4b 2479 mojust 2538 mof 2562 eujust 2570 eujustALT 2571 eu6lem 2572 euf 2575 eleq1w 2817 mo2icl 3697 disjxun 5117 axrep2 5252 dtruALT2 5340 zfpair 5391 dtruOLD 5416 dfid3 5551 solin 5588 isso2i 5598 iotavalOLD 6505 dff13f 7248 dfwe2 7768 poxp2 8142 poxp3 8149 aceq0 10132 zfac 10474 axpowndlem4 10614 zfcndac 10633 injresinj 13804 infpn2 16933 ramub1lem2 17047 fullestrcsetc 18163 fullsetcestrc 18178 symgextf1 19402 mplcoe1 21995 evlslem2 22037 mamulid 22379 mamurid 22380 mdetdiagid 22538 dscmet 24511 lgseisenlem2 27339 dchrisumlem3 27454 frgr2wwlk1 30310 sbequbidv 36232 cbvsbdavw2 36273 bj-ssblem1 36672 bj-ssblem2 36673 bj-ax12 36675 wl-aleq 37553 wl-mo2df 37588 wl-eudf 37590 wl-euequf 37592 wl-mo2t 37593 dveeq2-o 38951 axc11n-16 38956 ax12eq 38959 ax12inda 38966 ax12v2-o 38967 aks6d1c6lem3 42185 fsuppind 42613 eu6w 42699 fphpd 42839 iotavalb 44454 disjinfi 45216 eusnsn 47055 fcoresf1 47098 2reu8i 47142 2reuimp0 47143 ichexmpl1 47483 |
| Copyright terms: Public domain | W3C validator |