| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equequ2 | Structured version Visualization version GIF version | ||
| Description: An equivalence law for equality. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 4-Aug-2017.) (Proof shortened by BJ, 12-Apr-2021.) |
| Ref | Expression |
|---|---|
| equequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equtrr 2022 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 → 𝑧 = 𝑦)) | |
| 2 | equeuclr 2023 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑦 → 𝑧 = 𝑥)) | |
| 3 | 1, 2 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: sbjust 2064 sbequ 2084 sb6 2086 equsb3r 2105 ax13lem2 2374 dveeq2ALT 2452 sb4b 2473 mojust 2532 mof 2556 eujust 2564 eujustALT 2565 eu6lem 2566 euf 2569 eleq1w 2811 mo2icl 3682 disjxun 5100 axrep2 5232 dtruALT2 5320 zfpair 5371 dtruOLD 5396 dfid3 5529 solin 5566 isso2i 5576 iotavalOLD 6473 dff13f 7212 dfwe2 7730 poxp2 8099 poxp3 8106 aceq0 10047 zfac 10389 axpowndlem4 10529 zfcndac 10548 injresinj 13725 infpn2 16860 ramub1lem2 16974 fullestrcsetc 18088 fullsetcestrc 18103 symgextf1 19327 mplcoe1 21920 evlslem2 21962 mamulid 22304 mamurid 22305 mdetdiagid 22463 dscmet 24436 lgseisenlem2 27263 dchrisumlem3 27378 frgr2wwlk1 30231 sbequbidv 36175 cbvsbdavw2 36216 bj-ssblem1 36615 bj-ssblem2 36616 bj-ax12 36618 wl-aleq 37496 wl-mo2df 37531 wl-eudf 37533 wl-euequf 37535 wl-mo2t 37536 dveeq2-o 38899 axc11n-16 38904 ax12eq 38907 ax12inda 38914 ax12v2-o 38915 aks6d1c6lem3 42133 fsuppind 42551 eu6w 42637 fphpd 42777 iotavalb 44392 disjinfi 45159 eusnsn 47000 fcoresf1 47043 2reu8i 47087 2reuimp0 47088 ichexmpl1 47443 |
| Copyright terms: Public domain | W3C validator |