![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equequ2 | Structured version Visualization version GIF version |
Description: An equivalence law for equality. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 4-Aug-2017.) (Proof shortened by BJ, 12-Apr-2021.) |
Ref | Expression |
---|---|
equequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equtrr 2026 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 → 𝑧 = 𝑦)) | |
2 | equeuclr 2027 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑦 → 𝑧 = 𝑥)) | |
3 | 1, 2 | impbid 211 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 |
This theorem is referenced by: sbjust 2067 sbequ 2087 sb6 2089 equsb3r 2103 ax13lem2 2376 dveeq2ALT 2454 sb4b 2475 mojust 2534 mof 2558 eujust 2566 eujustALT 2567 eu6lem 2568 euf 2571 eleq1w 2817 mo2icl 3711 disjxun 5147 axrep2 5289 dtruALT2 5369 zfpair 5420 dtruOLD 5442 dfid3 5578 solin 5614 isso2i 5624 iotavalOLD 6518 dff13f 7255 dfwe2 7761 poxp2 8129 poxp3 8136 aceq0 10113 zfac 10455 axpowndlem4 10595 zfcndac 10614 injresinj 13753 infpn2 16846 ramub1lem2 16960 fullestrcsetc 18103 fullsetcestrc 18118 symgextf1 19289 mplcoe1 21592 evlslem2 21642 mamulid 21943 mamurid 21944 mdetdiagid 22102 dscmet 24081 lgseisenlem2 26879 dchrisumlem3 26994 frgr2wwlk1 29582 bj-ssblem1 35531 bj-ssblem2 35532 bj-ax12 35534 wl-aleq 36404 wl-mo2df 36435 wl-eudf 36437 wl-euequf 36439 wl-mo2t 36440 dveeq2-o 37803 axc11n-16 37808 ax12eq 37811 ax12inda 37818 ax12v2-o 37819 fsuppind 41162 fphpd 41554 iotavalb 43189 disjinfi 43891 eusnsn 45736 fcoresf1 45779 2reu8i 45821 2reuimp0 45822 ichexmpl1 46137 |
Copyright terms: Public domain | W3C validator |