Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equequ2 | Structured version Visualization version GIF version |
Description: An equivalence law for equality. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 4-Aug-2017.) (Proof shortened by BJ, 12-Apr-2021.) |
Ref | Expression |
---|---|
equequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equtrr 2025 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 → 𝑧 = 𝑦)) | |
2 | equeuclr 2026 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑦 → 𝑧 = 𝑥)) | |
3 | 1, 2 | impbid 211 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 |
This theorem is referenced by: sbjust 2066 sbequ 2086 sb6 2088 equsb3r 2102 ax13lem2 2376 dveeq2ALT 2454 sb4b 2475 sb4bOLD 2476 mojust 2539 mof 2563 eujust 2571 eujustALT 2572 eu6lem 2573 euf 2576 eleq1w 2821 mo2icl 3649 disjxun 5072 axrep2 5212 dtruALT2 5293 zfpair 5344 dtru 5359 dfid3 5492 solin 5528 isso2i 5538 iotaval 6407 dff13f 7129 dfwe2 7624 aceq0 9874 zfac 10216 axpowndlem4 10356 zfcndac 10375 injresinj 13508 infpn2 16614 ramub1lem2 16728 fullestrcsetc 17868 fullsetcestrc 17883 symgextf1 19029 mplcoe1 21238 evlslem2 21289 mamulid 21590 mamurid 21591 mdetdiagid 21749 dscmet 23728 lgseisenlem2 26524 dchrisumlem3 26639 frgr2wwlk1 28693 poxp2 33790 poxp3 33796 bj-ssblem1 34835 bj-ssblem2 34836 bj-ax12 34838 bj-dtru 34999 wl-aleq 35694 wl-mo2df 35725 wl-eudf 35727 wl-euequf 35729 wl-mo2t 35730 dveeq2-o 36947 axc11n-16 36952 ax12eq 36955 ax12inda 36962 ax12v2-o 36963 fsuppind 40279 fphpd 40638 iotavalb 42048 disjinfi 42731 eusnsn 44520 fcoresf1 44563 2reu8i 44605 2reuimp0 44606 ichexmpl1 44921 |
Copyright terms: Public domain | W3C validator |