| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equequ2 | Structured version Visualization version GIF version | ||
| Description: An equivalence law for equality. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 4-Aug-2017.) (Proof shortened by BJ, 12-Apr-2021.) |
| Ref | Expression |
|---|---|
| equequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equtrr 2022 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 → 𝑧 = 𝑦)) | |
| 2 | equeuclr 2023 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑦 → 𝑧 = 𝑥)) | |
| 3 | 1, 2 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: sbjust 2064 sbequ 2084 sb6 2086 equsb3r 2105 ax13lem2 2375 dveeq2ALT 2453 sb4b 2474 mojust 2533 mof 2557 eujust 2565 eujustALT 2566 eu6lem 2567 euf 2570 eleq1w 2812 mo2icl 3688 disjxun 5108 axrep2 5240 dtruALT2 5328 zfpair 5379 dtruOLD 5404 dfid3 5539 solin 5576 isso2i 5586 iotavalOLD 6488 dff13f 7233 dfwe2 7753 poxp2 8125 poxp3 8132 aceq0 10078 zfac 10420 axpowndlem4 10560 zfcndac 10579 injresinj 13756 infpn2 16891 ramub1lem2 17005 fullestrcsetc 18119 fullsetcestrc 18134 symgextf1 19358 mplcoe1 21951 evlslem2 21993 mamulid 22335 mamurid 22336 mdetdiagid 22494 dscmet 24467 lgseisenlem2 27294 dchrisumlem3 27409 frgr2wwlk1 30265 sbequbidv 36209 cbvsbdavw2 36250 bj-ssblem1 36649 bj-ssblem2 36650 bj-ax12 36652 wl-aleq 37530 wl-mo2df 37565 wl-eudf 37567 wl-euequf 37569 wl-mo2t 37570 dveeq2-o 38933 axc11n-16 38938 ax12eq 38941 ax12inda 38948 ax12v2-o 38949 aks6d1c6lem3 42167 fsuppind 42585 eu6w 42671 fphpd 42811 iotavalb 44426 disjinfi 45193 eusnsn 47031 fcoresf1 47074 2reu8i 47118 2reuimp0 47119 ichexmpl1 47474 |
| Copyright terms: Public domain | W3C validator |