![]() |
Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rmoeqbidv | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted at-most-one quantifier. Deduction form. General version of rmobidv 3393. (Contributed by GG, 1-Sep-2025.) |
Ref | Expression |
---|---|
rmoeqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
rmoeqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rmoeqbidv | ⊢ (𝜑 → (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmoeqbidv.1 | . . . . 5 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eleq2d 2823 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
3 | rmoeqbidv.2 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | anbi12d 631 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) |
5 | 4 | mobidv 2545 | . 2 ⊢ (𝜑 → (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ↔ ∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜒))) |
6 | df-rmo 3376 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
7 | df-rmo 3376 | . 2 ⊢ (∃*𝑥 ∈ 𝐵 𝜒 ↔ ∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜒)) | |
8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (𝜑 → (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1535 ∈ wcel 2104 ∃*wmo 2534 ∃*wrmo 3375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-ext 2704 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1775 df-mo 2536 df-cleq 2725 df-clel 2812 df-rmo 3376 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |