Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imbi2d | Structured version Visualization version GIF version |
Description: Deduction adding an antecedent to both sides of a logical equivalence. (Contributed by NM, 11-May-1993.) |
Ref | Expression |
---|---|
imbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
imbi2d | ⊢ (𝜑 → ((𝜃 → 𝜓) ↔ (𝜃 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 ↔ 𝜒))) |
3 | 2 | pm5.74d 272 | 1 ⊢ (𝜑 → ((𝜃 → 𝜓) ↔ (𝜃 → 𝜒))) |
Copyright terms: Public domain | W3C validator |