Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbfal | Structured version Visualization version GIF version |
Description: Substitution does not change falsity. (Contributed by Giovanni Mascellani, 24-May-2019.) |
Ref | Expression |
---|---|
sbfal.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
sbfal | ⊢ ([𝐴 / 𝑥]⊥ ↔ ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbfal.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sbcg 3791 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]⊥ ↔ ⊥)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝐴 / 𝑥]⊥ ↔ ⊥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ⊥wfal 1551 ∈ wcel 2108 Vcvv 3422 [wsbc 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-clel 2817 df-sbc 3712 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |