Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbfal Structured version   Visualization version   GIF version

Theorem sbfal 36265
Description: Substitution does not change falsity. (Contributed by Giovanni Mascellani, 24-May-2019.)
Hypothesis
Ref Expression
sbfal.1 𝐴 ∈ V
Assertion
Ref Expression
sbfal ([𝐴 / 𝑥]⊥ ↔ ⊥)

Proof of Theorem sbfal
StepHypRef Expression
1 sbfal.1 . 2 𝐴 ∈ V
2 sbcg 3795 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]⊥ ↔ ⊥))
31, 2ax-mp 5 1 ([𝐴 / 𝑥]⊥ ↔ ⊥)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wfal 1551  wcel 2106  Vcvv 3432  [wsbc 3716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-sb 2068  df-clab 2716  df-clel 2816  df-sbc 3717
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator