![]() |
Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcani | Structured version Visualization version GIF version |
Description: Distribution of class substitution over conjunction, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
Ref | Expression |
---|---|
sbcani.1 | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜒) |
sbcani.2 | ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝜂) |
Ref | Expression |
---|---|
sbcani | ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ (𝜒 ∧ 𝜂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcan 3721 | . 2 ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓)) | |
2 | sbcani.1 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜒) | |
3 | sbcani.2 | . . 3 ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝜂) | |
4 | 2, 3 | anbi12i 617 | . 2 ⊢ (([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓) ↔ (𝜒 ∧ 𝜂)) |
5 | 1, 4 | bitri 267 | 1 ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ (𝜒 ∧ 𝜂)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 387 [wsbc 3677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-12 2104 ax-ext 2745 |
This theorem depends on definitions: df-bi 199 df-an 388 df-ex 1743 df-nf 1747 df-sb 2014 df-clab 2754 df-cleq 2765 df-clel 2840 df-v 3411 df-sbc 3678 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |