|   | Mathbox for Giovanni Mascellani | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcani | Structured version Visualization version GIF version | ||
| Description: Distribution of class substitution over conjunction, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) | 
| Ref | Expression | 
|---|---|
| sbcani.1 | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜒) | 
| sbcani.2 | ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝜂) | 
| Ref | Expression | 
|---|---|
| sbcani | ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ (𝜒 ∧ 𝜂)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbcan 3838 | . 2 ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓)) | |
| 2 | sbcani.1 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜒) | |
| 3 | sbcani.2 | . . 3 ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝜂) | |
| 4 | 2, 3 | anbi12i 628 | . 2 ⊢ (([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓) ↔ (𝜒 ∧ 𝜂)) | 
| 5 | 1, 4 | bitri 275 | 1 ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ (𝜒 ∧ 𝜂)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 [wsbc 3788 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-sbc 3789 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |