Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcani | Structured version Visualization version GIF version |
Description: Distribution of class substitution over conjunction, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
Ref | Expression |
---|---|
sbcani.1 | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜒) |
sbcani.2 | ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝜂) |
Ref | Expression |
---|---|
sbcani | ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ (𝜒 ∧ 𝜂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcan 3763 | . 2 ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓)) | |
2 | sbcani.1 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜒) | |
3 | sbcani.2 | . . 3 ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝜂) | |
4 | 2, 3 | anbi12i 626 | . 2 ⊢ (([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓) ↔ (𝜒 ∧ 𝜂)) |
5 | 1, 4 | bitri 274 | 1 ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ (𝜒 ∧ 𝜂)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 [wsbc 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-sbc 3712 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |