MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbid2v Structured version   Visualization version   GIF version

Theorem sbid2v 2605
Description: An identity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sbid2v ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑𝜑)
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem sbid2v
StepHypRef Expression
1 nfv 1995 . 2 𝑥𝜑
21sbid2 2560 1 ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 196  [wsb 2049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-10 2174  ax-12 2203  ax-13 2408
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-ex 1853  df-nf 1858  df-sb 2050
This theorem is referenced by:  sbelx  2606  sbco4lem  2613
  Copyright terms: Public domain W3C validator