MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbid2v Structured version   Visualization version   GIF version

Theorem sbid2v 2513
Description: An identity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). Usage of this theorem is discouraged because it depends on ax-13 2372. See sbid2vw 2254 for a version with an extra disjoint variable condition requiring fewer axioms. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)
Assertion
Ref Expression
sbid2v ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑𝜑)
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem sbid2v
StepHypRef Expression
1 nfv 1918 . 2 𝑥𝜑
21sbid2 2512 1 ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788  df-sb 2069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator