MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbid2v Structured version   Visualization version   GIF version

Theorem sbid2v 2517
Description: An identity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). Usage of this theorem is discouraged because it depends on ax-13 2380. See sbid2vw 2260 for a version with an extra disjoint variable condition requiring fewer axioms. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)
Assertion
Ref Expression
sbid2v ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑𝜑)
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem sbid2v
StepHypRef Expression
1 nfv 1913 . 2 𝑥𝜑
21sbid2 2516 1 ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-12 2178  ax-13 2380
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-nf 1782  df-sb 2065
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator