Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbid2v Structured version   Visualization version   GIF version

Theorem sbid2v 2528
 Description: An identity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). Usage of this theorem is discouraged because it depends on ax-13 2379. See sbid2vw 2257 for a version with an extra disjoint variable condition requiring fewer axioms. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)
Assertion
Ref Expression
sbid2v ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑𝜑)
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem sbid2v
StepHypRef Expression
1 nfv 1915 . 2 𝑥𝜑
21sbid2 2527 1 ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑𝜑)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209  [wsb 2069 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-10 2142  ax-12 2175  ax-13 2379 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ex 1782  df-nf 1786  df-sb 2070 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator