MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbidm Structured version   Visualization version   GIF version

Theorem sbidm 2505
Description: An idempotent law for substitution. (Contributed by NM, 30-Jun-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 13-Jul-2019.)
Assertion
Ref Expression
sbidm ([𝑦 / 𝑥][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)

Proof of Theorem sbidm
StepHypRef Expression
1 sbcom3 2502 . 2 ([𝑦 / 𝑥][𝑥 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑥]𝜑)
2 sbid 2281 . . 3 ([𝑥 / 𝑥]𝜑𝜑)
32sbbii 2069 . 2 ([𝑦 / 𝑥][𝑥 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
41, 3bitr3i 268 1 ([𝑦 / 𝑥][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 197  [wsb 2062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-10 2183  ax-12 2211  ax-13 2352
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-ex 1875  df-nf 1879  df-sb 2063
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator