MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbievwOLD Structured version   Visualization version   GIF version

Theorem sbievwOLD 2094
Description: Obsolete version of sbievw 2093 as of 24-Aug-2025. (Contributed by NM, 30-Jun-1994.) (Revised by BJ, 18-Jul-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
sbievw.is (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
sbievwOLD ([𝑦 / 𝑥]𝜑𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem sbievwOLD
StepHypRef Expression
1 sb6 2085 . 2 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
2 sbievw.is . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
32equsalvw 2003 . 2 (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
41, 3bitri 275 1 ([𝑦 / 𝑥]𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator