![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbievw | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit substitution. Version of sbie 2501 and sbiev 2308 with more disjoint variable conditions, requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by BJ, 18-Jul-2023.) |
Ref | Expression |
---|---|
sbievw.is | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbievw | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 2088 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
2 | sbievw.is | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | equsalvw 2007 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
4 | 1, 3 | bitri 274 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1539 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-sb 2068 |
This theorem is referenced by: sbiedvw 2096 2sbievw 2097 sbievw2 2099 sbid2vw 2250 cbvsbv 2359 2mos 2645 eqabbw 2809 sbralieALT 3355 rabrabi 3450 ralab 3686 sbcco2 3803 sbcie2g 3818 csbied 3930 ss2abdv 4059 unabw 4296 notabw 4302 ab0w 4372 ab0orv 4377 elabgw 41013 2reu8i 45807 ichcircshi 46108 |
Copyright terms: Public domain | W3C validator |