![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbievw | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit substitution. Version of sbie 2495 and sbiev 2303 with more disjoint variable conditions, requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by BJ, 18-Jul-2023.) |
Ref | Expression |
---|---|
sbievw.is | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbievw | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 2080 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
2 | sbievw.is | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | equsalvw 1999 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
4 | 1, 3 | bitri 274 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1531 [wsb 2059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-sb 2060 |
This theorem is referenced by: sbiedvw 2088 2sbievw 2089 sbievw2 2091 sbid2vw 2245 cbvsbv 2353 2mosOLD 2638 eqabbw 2801 sbralieALT 3342 rabrabi 3437 ralab 3683 sbcco2 3800 sbcie2g 3816 csbied 3927 dfss2 3962 unabw 4296 notabw 4302 ab0w 4375 ab0orv 4380 elabgw 42225 2reu8i 46631 ichcircshi 46931 |
Copyright terms: Public domain | W3C validator |