| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbievw | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution. Version of sbie 2502 and sbiev 2315 with more disjoint variable conditions, requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by BJ, 18-Jul-2023.) (Proof shortened by SN, 24-Aug-2025.) |
| Ref | Expression |
|---|---|
| sbievw.is | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbievw | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbievw.is | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | sbbiiev 2095 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) |
| 3 | sbv 2091 | . 2 ⊢ ([𝑦 / 𝑥]𝜓 ↔ 𝜓) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 |
| This theorem is referenced by: sbiedvw 2098 2sbievw 2099 sbievw2 2101 cbvsbv 2103 sbco4 2105 sbid2vw 2262 2mosOLD 2645 eqabbw 2804 sbralie 3318 sbralieALT 3319 rabrabi 3414 elabgw 3628 ralab 3647 sbcco2 3763 sbcie2g 3777 csbied 3881 dfss2 3915 unabw 4254 notabw 4260 2reu8i 47212 ichcircshi 47553 |
| Copyright terms: Public domain | W3C validator |