![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbievw | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit substitution. Version of sbie 2510 and sbiev 2318 with more disjoint variable conditions, requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by BJ, 18-Jul-2023.) (Proof shortened by SN, 24-Aug-2025.) |
Ref | Expression |
---|---|
sbievw.is | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbievw | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbievw.is | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | sbbiiev 2092 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) |
3 | sbv 2088 | . 2 ⊢ ([𝑦 / 𝑥]𝜓 ↔ 𝜓) | |
4 | 2, 3 | bitri 275 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 [wsb 2064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 |
This theorem is referenced by: sbiedvw 2095 2sbievw 2096 sbievw2 2098 cbvsbv 2100 sbco4 2102 sbid2vw 2260 2mosOLD 2653 eqabbw 2818 sbralieALT 3367 rabrabi 3463 elabgw 3692 ralab 3713 sbcco2 3831 sbcie2g 3847 csbied 3959 dfss2 3994 unabw 4326 notabw 4332 ab0w 4401 ab0orv 4406 2reu8i 47028 ichcircshi 47328 |
Copyright terms: Public domain | W3C validator |