MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbievw Structured version   Visualization version   GIF version

Theorem sbievw 2093
Description: Conversion of implicit substitution to explicit substitution. Version of sbie 2506 and sbiev 2314 with more disjoint variable conditions, requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by BJ, 18-Jul-2023.) (Proof shortened by SN, 24-Aug-2025.)
Hypothesis
Ref Expression
sbievw.is (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
sbievw ([𝑦 / 𝑥]𝜑𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem sbievw
StepHypRef Expression
1 sbievw.is . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
21sbbiiev 2092 . 2 ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓)
3 sbv 2088 . 2 ([𝑦 / 𝑥]𝜓𝜓)
42, 3bitri 275 1 ([𝑦 / 𝑥]𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2065
This theorem is referenced by:  sbiedvw  2095  2sbievw  2096  sbievw2  2098  cbvsbv  2100  sbco4  2102  sbid2vw  2259  2mosOLD  2649  eqabbw  2808  sbralieALT  3338  rabrabi  3435  elabgw  3656  ralab  3676  sbcco2  3792  sbcie2g  3806  csbied  3910  dfss2  3944  unabw  4282  notabw  4288  ab0w  4354  ab0orv  4358  2reu8i  47142  ichcircshi  47468
  Copyright terms: Public domain W3C validator