| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbievw | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution. Version of sbie 2501 and sbiev 2313 with more disjoint variable conditions, requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by BJ, 18-Jul-2023.) (Proof shortened by SN, 24-Aug-2025.) |
| Ref | Expression |
|---|---|
| sbievw.is | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbievw | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbievw.is | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | sbbiiev 2093 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) |
| 3 | sbv 2089 | . 2 ⊢ ([𝑦 / 𝑥]𝜓 ↔ 𝜓) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 |
| This theorem is referenced by: sbiedvw 2096 2sbievw 2097 sbievw2 2099 cbvsbv 2101 sbco4 2103 sbid2vw 2260 2mosOLD 2644 eqabbw 2803 sbralie 3328 sbralieALT 3329 rabrabi 3428 elabgw 3647 ralab 3667 sbcco2 3783 sbcie2g 3797 csbied 3901 dfss2 3935 unabw 4273 notabw 4279 ab0w 4345 ab0orv 4349 2reu8i 47118 ichcircshi 47459 |
| Copyright terms: Public domain | W3C validator |