| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbievw | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution. Version of sbie 2500 and sbiev 2313 with more disjoint variable conditions, requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by BJ, 18-Jul-2023.) (Proof shortened by SN, 24-Aug-2025.) |
| Ref | Expression |
|---|---|
| sbievw.is | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbievw | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbievw.is | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | sbbiiev 2093 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) |
| 3 | sbv 2089 | . 2 ⊢ ([𝑦 / 𝑥]𝜓 ↔ 𝜓) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 |
| This theorem is referenced by: sbiedvw 2096 2sbievw 2097 sbievw2 2099 cbvsbv 2101 sbco4 2103 sbid2vw 2260 2mosOLD 2643 eqabbw 2802 sbralie 3323 sbralieALT 3324 rabrabi 3422 elabgw 3641 ralab 3661 sbcco2 3777 sbcie2g 3791 csbied 3895 dfss2 3929 unabw 4266 notabw 4272 ab0w 4338 ab0orv 4342 2reu8i 47107 ichcircshi 47448 |
| Copyright terms: Public domain | W3C validator |