MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbievw Structured version   Visualization version   GIF version

Theorem sbievw 2097
Description: Conversion of implicit substitution to explicit substitution. Version of sbie 2506 and sbiev 2312 with more disjoint variable conditions, requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by BJ, 18-Jul-2023.)
Hypothesis
Ref Expression
sbievw.is (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
sbievw ([𝑦 / 𝑥]𝜑𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem sbievw
StepHypRef Expression
1 sb6 2089 . 2 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
2 sbievw.is . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
32equsalvw 2008 . 2 (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
41, 3bitri 274 1 ([𝑦 / 𝑥]𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-sb 2069
This theorem is referenced by:  sbiedvw  2098  2sbievw  2099  sbievw2  2101  sbid2vw  2254  2mos  2651  cbvabv  2812  abeq2w  2816  sbralie  3395  rabrabi  3417  ralab  3621  sbcco2  3738  sbcie2g  3753  csbied  3866  ss2abdv  3993  unabw  4228  notabw  4234  ab0w  4304  ab0orv  4309  elabgw  40093  2reu8i  44492  ichcircshi  44794
  Copyright terms: Public domain W3C validator