Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbievw | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit substitution. Version of sbie 2508 and sbiev 2313 with more disjoint variable conditions, requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by BJ, 18-Jul-2023.) |
Ref | Expression |
---|---|
sbievw.is | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbievw | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 2092 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
2 | sbievw.is | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | equsalvw 2011 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
4 | 1, 3 | bitri 274 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1540 [wsb 2071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1787 df-sb 2072 |
This theorem is referenced by: sbiedvw 2100 2sbievw 2101 sbievw2 2103 sbid2vw 2255 2mos 2653 cbvabv 2813 abeq2w 2817 sbralie 3404 rabrabi 3426 ralab 3630 sbcco2 3747 sbcie2g 3762 csbied 3875 ss2abdv 4002 unabw 4237 notabw 4243 ab0w 4313 ab0orv 4318 elabgw 40160 2reu8i 44571 ichcircshi 44873 |
Copyright terms: Public domain | W3C validator |