MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbievw Structured version   Visualization version   GIF version

Theorem sbievw 2095
Description: Conversion of implicit substitution to explicit substitution. Version of sbie 2501 and sbiev 2308 with more disjoint variable conditions, requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by BJ, 18-Jul-2023.)
Hypothesis
Ref Expression
sbievw.is (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
sbievw ([𝑦 / 𝑥]𝜑𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem sbievw
StepHypRef Expression
1 sb6 2088 . 2 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
2 sbievw.is . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
32equsalvw 2007 . 2 (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
41, 3bitri 274 1 ([𝑦 / 𝑥]𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1539  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1782  df-sb 2068
This theorem is referenced by:  sbiedvw  2096  2sbievw  2097  sbievw2  2099  sbid2vw  2250  cbvsbv  2359  2mos  2645  eqabbw  2809  sbralieALT  3355  rabrabi  3450  ralab  3686  sbcco2  3803  sbcie2g  3818  csbied  3930  ss2abdv  4059  unabw  4296  notabw  4302  ab0w  4372  ab0orv  4377  elabgw  41013  2reu8i  45807  ichcircshi  46108
  Copyright terms: Public domain W3C validator