MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbievw Structured version   Visualization version   GIF version

Theorem sbievw 2093
Description: Conversion of implicit substitution to explicit substitution. Version of sbie 2510 and sbiev 2318 with more disjoint variable conditions, requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by BJ, 18-Jul-2023.) (Proof shortened by SN, 24-Aug-2025.)
Hypothesis
Ref Expression
sbievw.is (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
sbievw ([𝑦 / 𝑥]𝜑𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem sbievw
StepHypRef Expression
1 sbievw.is . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
21sbbiiev 2092 . 2 ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓)
3 sbv 2088 . 2 ([𝑦 / 𝑥]𝜓𝜓)
42, 3bitri 275 1 ([𝑦 / 𝑥]𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065
This theorem is referenced by:  sbiedvw  2095  2sbievw  2096  sbievw2  2098  cbvsbv  2100  sbco4  2102  sbid2vw  2260  2mosOLD  2653  eqabbw  2818  sbralieALT  3367  rabrabi  3463  elabgw  3692  ralab  3713  sbcco2  3831  sbcie2g  3847  csbied  3959  dfss2  3994  unabw  4326  notabw  4332  ab0w  4401  ab0orv  4406  2reu8i  47028  ichcircshi  47328
  Copyright terms: Public domain W3C validator