MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbiedvw Structured version   Visualization version   GIF version

Theorem sbiedvw 2096
Description: Conversion of implicit substitution to explicit substitution (deduction version of sbievw 2094). Version of sbied 2508 and sbiedv 2509 with more disjoint variable conditions, requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by GG, 29-Jan-2024.)
Hypothesis
Ref Expression
sbiedvw.1 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
Assertion
Ref Expression
sbiedvw (𝜑 → ([𝑦 / 𝑥]𝜓𝜒))
Distinct variable groups:   𝜑,𝑥   𝜒,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑦)

Proof of Theorem sbiedvw
StepHypRef Expression
1 sbrimvw 2092 . . 3 ([𝑦 / 𝑥](𝜑𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓))
2 sbiedvw.1 . . . . . 6 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
32expcom 413 . . . . 5 (𝑥 = 𝑦 → (𝜑 → (𝜓𝜒)))
43pm5.74d 273 . . . 4 (𝑥 = 𝑦 → ((𝜑𝜓) ↔ (𝜑𝜒)))
54sbievw 2094 . . 3 ([𝑦 / 𝑥](𝜑𝜓) ↔ (𝜑𝜒))
61, 5bitr3i 277 . 2 ((𝜑 → [𝑦 / 𝑥]𝜓) ↔ (𝜑𝜒))
76pm5.74ri 272 1 (𝜑 → ([𝑦 / 𝑥]𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  [wsb 2065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066
This theorem is referenced by:  2sbievw  2097  iscatd2  17698  bj-elabd2ALT  36948
  Copyright terms: Public domain W3C validator