Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbiedvw | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit substitution (deduction version of sbievw 2101). Version of sbied 2523 and sbiedv 2524 with more disjoint variable conditions, requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by Gino Giotto, 29-Jan-2024.) |
Ref | Expression |
---|---|
sbiedvw.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
sbiedvw | ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbrimvw 2100 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) | |
2 | sbiedvw.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | |
3 | 2 | expcom 418 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 → (𝜓 ↔ 𝜒))) |
4 | 3 | pm5.74d 276 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) |
5 | 4 | sbievw 2101 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
6 | 1, 5 | bitr3i 280 | . 2 ⊢ ((𝜑 → [𝑦 / 𝑥]𝜓) ↔ (𝜑 → 𝜒)) |
7 | 6 | pm5.74ri 275 | 1 ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 [wsb 2070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 |
This theorem depends on definitions: df-bi 210 df-an 401 df-ex 1783 df-sb 2071 |
This theorem is referenced by: 2sbievw 2103 iscatd2 17003 |
Copyright terms: Public domain | W3C validator |