| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbimd | Structured version Visualization version GIF version | ||
| Description: Deduction substituting both sides of an implication. (Contributed by Wolf Lammen, 24-Nov-2022.) Revise df-sb 2064. (Revised by Steven Nguyen, 9-Jul-2023.) |
| Ref | Expression |
|---|---|
| sbimd.1 | ⊢ Ⅎ𝑥𝜑 |
| sbimd.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| sbimd | ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbimd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | sbimd.2 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | alrimi 2212 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 → 𝜒)) |
| 4 | spsbim 2071 | . 2 ⊢ (∀𝑥(𝜓 → 𝜒) → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜒)) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1537 Ⅎwnf 1782 [wsb 2063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 df-nf 1783 df-sb 2064 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |