MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbimd Structured version   Visualization version   GIF version

Theorem sbimd 2240
Description: Deduction substituting both sides of an implication. (Contributed by Wolf Lammen, 24-Nov-2022.) Revise df-sb 2069. (Revised by Steven Nguyen, 9-Jul-2023.)
Hypotheses
Ref Expression
sbimd.1 𝑥𝜑
sbimd.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
sbimd (𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜒))

Proof of Theorem sbimd
StepHypRef Expression
1 sbimd.1 . . 3 𝑥𝜑
2 sbimd.2 . . 3 (𝜑 → (𝜓𝜒))
31, 2alrimi 2209 . 2 (𝜑 → ∀𝑥(𝜓𝜒))
4 spsbim 2076 . 2 (∀𝑥(𝜓𝜒) → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜒))
53, 4syl 17 1 (𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wnf 1787  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-ex 1784  df-nf 1788  df-sb 2069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator