| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spsbim | Structured version Visualization version GIF version | ||
| Description: Distribute substitution over implication. Closed form of sbimi 2077. Specialization of implication. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) Revise df-sb 2068. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Steven Nguyen, 24-Jul-2023.) |
| Ref | Expression |
|---|---|
| spsbim | ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stdpc4 2071 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → [𝑡 / 𝑥](𝜑 → 𝜓)) | |
| 2 | sbi1 2074 | . 2 ⊢ ([𝑡 / 𝑥](𝜑 → 𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-sb 2068 |
| This theorem is referenced by: spsbbi 2076 sbimdv 2081 sbimd 2248 mo3 2559 bj-hbsb3t 36828 wl-mo3t 37616 ss2ab1 42258 pm11.59 44430 sbiota1 44473 |
| Copyright terms: Public domain | W3C validator |