| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spsbim | Structured version Visualization version GIF version | ||
| Description: Distribute substitution over implication. Closed form of sbimi 2075. Specialization of implication. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) Revise df-sb 2066. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Steven Nguyen, 24-Jul-2023.) |
| Ref | Expression |
|---|---|
| spsbim | ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stdpc4 2069 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → [𝑡 / 𝑥](𝜑 → 𝜓)) | |
| 2 | sbi1 2072 | . 2 ⊢ ([𝑡 / 𝑥](𝜑 → 𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-sb 2066 |
| This theorem is referenced by: spsbbi 2074 sbimdv 2079 sbimd 2246 mo3 2564 bj-hbsb3t 36811 wl-mo3t 37599 ss2ab1 42237 pm11.59 44382 sbiota1 44425 |
| Copyright terms: Public domain | W3C validator |