Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > spsbim | Structured version Visualization version GIF version |
Description: Distribute substitution over implication. Closed form of sbimi 2077. Specialization of implication. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) Revise df-sb 2068. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Steven Nguyen, 24-Jul-2023.) |
Ref | Expression |
---|---|
spsbim | ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stdpc4 2071 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → [𝑡 / 𝑥](𝜑 → 𝜓)) | |
2 | sbi1 2074 | . 2 ⊢ ([𝑡 / 𝑥](𝜑 → 𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-sb 2068 |
This theorem is referenced by: spsbbi 2076 sbimdv 2081 sbimd 2237 mo3 2564 bj-hbsb3t 34970 wl-mo3t 35731 pm11.59 42009 sbiota1 42052 |
Copyright terms: Public domain | W3C validator |