Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > spsbim | Structured version Visualization version GIF version |
Description: Distribute substitution over implication. Closed form of sbimi 2078. Specialization of implication. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) Revise df-sb 2069. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Steven Nguyen, 24-Jul-2023.) |
Ref | Expression |
---|---|
spsbim | ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stdpc4 2072 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → [𝑡 / 𝑥](𝜑 → 𝜓)) | |
2 | sbi1 2075 | . 2 ⊢ ([𝑡 / 𝑥](𝜑 → 𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-sb 2069 |
This theorem is referenced by: spsbbi 2077 sbimdv 2082 sbimd 2240 mo3 2564 bj-hbsb3t 34897 wl-mo3t 35658 pm11.59 41898 sbiota1 41941 |
Copyright terms: Public domain | W3C validator |