MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spsbim Structured version   Visualization version   GIF version

Theorem spsbim 2073
Description: Distribute substitution over implication. Closed form of sbimi 2075. Specialization of implication. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) Revise df-sb 2066. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Steven Nguyen, 24-Jul-2023.)
Assertion
Ref Expression
spsbim (∀𝑥(𝜑𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))

Proof of Theorem spsbim
StepHypRef Expression
1 stdpc4 2069 . 2 (∀𝑥(𝜑𝜓) → [𝑡 / 𝑥](𝜑𝜓))
2 sbi1 2072 . 2 ([𝑡 / 𝑥](𝜑𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))
31, 2syl 17 1 (∀𝑥(𝜑𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  [wsb 2065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-sb 2066
This theorem is referenced by:  spsbbi  2074  sbimdv  2079  sbimd  2246  mo3  2564  bj-hbsb3t  36811  wl-mo3t  37599  ss2ab1  42237  pm11.59  44382  sbiota1  44425
  Copyright terms: Public domain W3C validator