MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spsbim Structured version   Visualization version   GIF version

Theorem spsbim 2050
Description: Distribute substitution over implication. Closed form of sbimi 2052. Specialization of implication. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) Revise df-sb 2043. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Steven Nguyen, 24-Jul-2023.)
Assertion
Ref Expression
spsbim (∀𝑥(𝜑𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))

Proof of Theorem spsbim
StepHypRef Expression
1 stdpc4 2046 . 2 (∀𝑥(𝜑𝜓) → [𝑡 / 𝑥](𝜑𝜓))
2 sbi1 2049 . 2 ([𝑡 / 𝑥](𝜑𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))
31, 2syl 17 1 (∀𝑥(𝜑𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1520  [wsb 2042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888
This theorem depends on definitions:  df-bi 208  df-sb 2043
This theorem is referenced by:  spsbbi  2051  sbimdv  2056  sbimd  2209  mo3  2604  mo3OLD  2605  bj-hbsb3t  33654  wl-mo3t  34343  pm11.59  40261  sbiota1  40304
  Copyright terms: Public domain W3C validator