MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spsbim Structured version   Visualization version   GIF version

Theorem spsbim 2075
Description: Distribute substitution over implication. Closed form of sbimi 2077. Specialization of implication. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) Revise df-sb 2068. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Steven Nguyen, 24-Jul-2023.)
Assertion
Ref Expression
spsbim (∀𝑥(𝜑𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))

Proof of Theorem spsbim
StepHypRef Expression
1 stdpc4 2071 . 2 (∀𝑥(𝜑𝜓) → [𝑡 / 𝑥](𝜑𝜓))
2 sbi1 2074 . 2 ([𝑡 / 𝑥](𝜑𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))
31, 2syl 17 1 (∀𝑥(𝜑𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913
This theorem depends on definitions:  df-bi 206  df-sb 2068
This theorem is referenced by:  spsbbi  2076  sbimdv  2081  sbimd  2237  mo3  2564  bj-hbsb3t  34970  wl-mo3t  35731  pm11.59  42009  sbiota1  42052
  Copyright terms: Public domain W3C validator