MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb4av Structured version   Visualization version   GIF version

Theorem sb4av 2239
Description: Version of sb4a 2484 with a disjoint variable condition, which does not require ax-13 2372. The distinctor antecedent from sb4b 2475 is replaced by a disjoint variable condition in this theorem. (Contributed by NM, 2-Feb-2007.) (Revised by BJ, 15-Dec-2023.)
Assertion
Ref Expression
sb4av ([𝑡 / 𝑥]∀𝑡𝜑 → ∀𝑥(𝑥 = 𝑡𝜑))
Distinct variable group:   𝑥,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑡)

Proof of Theorem sb4av
StepHypRef Expression
1 sp 2178 . . 3 (∀𝑡𝜑𝜑)
21sbimi 2078 . 2 ([𝑡 / 𝑥]∀𝑡𝜑 → [𝑡 / 𝑥]𝜑)
3 sb6 2089 . 2 ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡𝜑))
42, 3sylib 217 1 ([𝑡 / 𝑥]∀𝑡𝜑 → ∀𝑥(𝑥 = 𝑡𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-sb 2069
This theorem is referenced by:  bj-hbsb2av  34923
  Copyright terms: Public domain W3C validator