|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > zfauscl | Structured version Visualization version GIF version | ||
| Description: Separation Scheme
(Aussonderung) using a class variable.  To derive this
       from ax-sep 5296, we invoke the Axiom of Extensionality
(indirectly via
       vtocl 3558), which is needed for the justification of
class variable
       notation. If we omit the requirement that 𝑦 not occur in 𝜑, we can derive a contradiction, as notzfaus 5363 shows. (Contributed by NM, 21-Jun-1993.) | 
| Ref | Expression | 
|---|---|
| zfauscl.1 | ⊢ 𝐴 ∈ V | 
| Ref | Expression | 
|---|---|
| zfauscl | ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | zfauscl.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | eleq2 2830 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝐴)) | |
| 3 | 2 | anbi1d 631 | . . . . 5 ⊢ (𝑧 = 𝐴 → ((𝑥 ∈ 𝑧 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) | 
| 4 | 3 | bibi2d 342 | . . . 4 ⊢ (𝑧 = 𝐴 → ((𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) ↔ (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)))) | 
| 5 | 4 | albidv 1920 | . . 3 ⊢ (𝑧 = 𝐴 → (∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) ↔ ∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)))) | 
| 6 | 5 | exbidv 1921 | . 2 ⊢ (𝑧 = 𝐴 → (∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) ↔ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)))) | 
| 7 | ax-sep 5296 | . 2 ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) | |
| 8 | 1, 6, 7 | vtocl 3558 | 1 ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2108 Vcvv 3480 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2729 df-clel 2816 | 
| This theorem is referenced by: inex1 5317 | 
| Copyright terms: Public domain | W3C validator |