![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zfauscl | Structured version Visualization version GIF version |
Description: Separation Scheme
(Aussonderung) using a class variable. To derive this
from ax-sep 5317, we invoke the Axiom of Extensionality
(indirectly via
vtocl 3570), which is needed for the justification of
class variable
notation.
If we omit the requirement that 𝑦 not occur in 𝜑, we can derive a contradiction, as notzfaus 5381 shows. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
zfauscl.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
zfauscl | ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfauscl.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | eleq2 2833 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝐴)) | |
3 | 2 | anbi1d 630 | . . . . 5 ⊢ (𝑧 = 𝐴 → ((𝑥 ∈ 𝑧 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
4 | 3 | bibi2d 342 | . . . 4 ⊢ (𝑧 = 𝐴 → ((𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) ↔ (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)))) |
5 | 4 | albidv 1919 | . . 3 ⊢ (𝑧 = 𝐴 → (∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) ↔ ∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)))) |
6 | 5 | exbidv 1920 | . 2 ⊢ (𝑧 = 𝐴 → (∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) ↔ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)))) |
7 | ax-sep 5317 | . 2 ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) | |
8 | 1, 6, 7 | vtocl 3570 | 1 ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 |
This theorem is referenced by: inex1 5335 |
Copyright terms: Public domain | W3C validator |