![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp2r1 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp2r1 | ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 1195 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜑) | |
2 | 1 | 3ad2ant2 1135 | 1 ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: poxp3 8131 btwnconn1lem8 35004 btwnconn1lem9 35005 btwnconn1lem10 35006 btwnconn1lem11 35007 btwnconn1lem12 35008 jm2.27 41680 |
Copyright terms: Public domain | W3C validator |