MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp2r1 Structured version   Visualization version   GIF version

Theorem simp2r1 1274
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp2r1 ((𝜏 ∧ (𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜂) → 𝜑)

Proof of Theorem simp2r1
StepHypRef Expression
1 simpr1 1193 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜑)
213ad2ant2 1133 1 ((𝜏 ∧ (𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜂) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  btwnconn1lem8  34396  btwnconn1lem9  34397  btwnconn1lem10  34398  btwnconn1lem11  34399  btwnconn1lem12  34400  jm2.27  40830
  Copyright terms: Public domain W3C validator