Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  btwnconn1lem12 Structured version   Visualization version   GIF version

Theorem btwnconn1lem12 34327
Description: Lemma for btwnconn1 34330. Using a long string of invocations of linecgr 34310, we show that 𝐷 = 𝑑. (Contributed by Scott Fenton, 9-Oct-2013.)
Assertion
Ref Expression
btwnconn1lem12 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → 𝐷 = 𝑑)

Proof of Theorem btwnconn1lem12
StepHypRef Expression
1 simp11 1201 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
2 simp2l1 1270 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
3 simp2l3 1272 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → 𝑐 ∈ (𝔼‘𝑁))
4 simp31 1207 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → 𝑃 ∈ (𝔼‘𝑁))
5 simp32 1208 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → 𝑄 ∈ (𝔼‘𝑁))
6 simp1l3 1266 . . . . . 6 ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) → 𝐶𝑐)
76ad2antrl 724 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → 𝐶𝑐)
8 simpr1l 1228 . . . . . . 7 (((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))) → 𝐶 Btwn ⟨𝑐, 𝑃⟩)
98ad2antll 725 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → 𝐶 Btwn ⟨𝑐, 𝑃⟩)
10 btwncolinear5 34302 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑐 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝑐, 𝑃⟩ → 𝐶 Colinear ⟨𝑐, 𝑃⟩))
111, 3, 4, 2, 10syl13anc 1370 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝑐, 𝑃⟩ → 𝐶 Colinear ⟨𝑐, 𝑃⟩))
1211adantr 480 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → (𝐶 Btwn ⟨𝑐, 𝑃⟩ → 𝐶 Colinear ⟨𝑐, 𝑃⟩))
139, 12mpd 15 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → 𝐶 Colinear ⟨𝑐, 𝑃⟩)
14 simp2l2 1271 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
15 simp2r1 1273 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → 𝑑 ∈ (𝔼‘𝑁))
16 simpr1r 1229 . . . . . . . 8 (((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))) → ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩)
1716ad2antll 725 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩)
18 simp2rr 1241 . . . . . . . 8 ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) → ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)
1918ad2antrl 724 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)
201, 2, 4, 2, 15, 2, 14, 17, 19cgrtrand 34222 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝐷⟩)
21 btwnconn1lem11 34326 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝐷, 𝐶⟩Cgr⟨𝑄, 𝐶⟩)
221, 14, 2, 5, 2, 21cgrcomlrand 34230 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝐶, 𝐷⟩Cgr⟨𝐶, 𝑄⟩)
231, 2, 4, 2, 14, 2, 5, 20, 22cgrtrand 34222 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑄⟩)
24 simp12 1202 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
25 simp13 1203 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
26 simp2r2 1274 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → 𝑏 ∈ (𝔼‘𝑁))
27 simp1rr 1237 . . . . . . . . . . . 12 ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) → 𝐵 Btwn ⟨𝐴, 𝐷⟩)
2827ad2antrl 724 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → 𝐵 Btwn ⟨𝐴, 𝐷⟩)
29 simp2ll 1238 . . . . . . . . . . . 12 ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) → 𝐷 Btwn ⟨𝐴, 𝑐⟩)
3029ad2antrl 724 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → 𝐷 Btwn ⟨𝐴, 𝑐⟩)
311, 24, 25, 14, 3, 28, 30btwnexchand 34255 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → 𝐵 Btwn ⟨𝐴, 𝑐⟩)
32 simp3ll 1242 . . . . . . . . . . 11 ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) → 𝑐 Btwn ⟨𝐴, 𝑏⟩)
3332ad2antrl 724 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → 𝑐 Btwn ⟨𝐴, 𝑏⟩)
341, 24, 25, 3, 26, 31, 33btwnexch3and 34250 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → 𝑐 Btwn ⟨𝐵, 𝑏⟩)
35 opeq1 4801 . . . . . . . . . . . . . 14 (𝐵 = 𝑏 → ⟨𝐵, 𝑏⟩ = ⟨𝑏, 𝑏⟩)
3635breq2d 5082 . . . . . . . . . . . . 13 (𝐵 = 𝑏 → (𝑐 Btwn ⟨𝐵, 𝑏⟩ ↔ 𝑐 Btwn ⟨𝑏, 𝑏⟩))
3736biimpac 478 . . . . . . . . . . . 12 ((𝑐 Btwn ⟨𝐵, 𝑏⟩ ∧ 𝐵 = 𝑏) → 𝑐 Btwn ⟨𝑏, 𝑏⟩)
38 axbtwnid 27210 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑐 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) → (𝑐 Btwn ⟨𝑏, 𝑏⟩ → 𝑐 = 𝑏))
391, 3, 26, 38syl3anc 1369 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (𝑐 Btwn ⟨𝑏, 𝑏⟩ → 𝑐 = 𝑏))
4037, 39syl5 34 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → ((𝑐 Btwn ⟨𝐵, 𝑏⟩ ∧ 𝐵 = 𝑏) → 𝑐 = 𝑏))
4140expd 415 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (𝑐 Btwn ⟨𝐵, 𝑏⟩ → (𝐵 = 𝑏𝑐 = 𝑏)))
4241adantr 480 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → (𝑐 Btwn ⟨𝐵, 𝑏⟩ → (𝐵 = 𝑏𝑐 = 𝑏)))
4334, 42mpd 15 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → (𝐵 = 𝑏𝑐 = 𝑏))
44 simp1 1134 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
45 simp2l 1197 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)))
46 simp2r 1198 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)))
4744, 45, 463jca 1126 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))))
48 simpl 482 . . . . . . . . . . 11 (((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩)))) → (((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))))
49 simprl 767 . . . . . . . . . . 11 (((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩)))) → (𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩))
5048, 49jca 511 . . . . . . . . . 10 (((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩)))) → ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ (𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩)))
51 btwnconn1lem7 34322 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ (𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩))) → 𝐶𝑑)
5247, 50, 51syl2an 595 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → 𝐶𝑑)
53 simp2rl 1240 . . . . . . . . . . . 12 ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) → 𝐶 Btwn ⟨𝐴, 𝑑⟩)
5453ad2antrl 724 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → 𝐶 Btwn ⟨𝐴, 𝑑⟩)
55 simp3rl 1244 . . . . . . . . . . . 12 ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) → 𝑑 Btwn ⟨𝐴, 𝑏⟩)
5655ad2antrl 724 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → 𝑑 Btwn ⟨𝐴, 𝑏⟩)
571, 24, 2, 15, 26, 54, 56btwnexch3and 34250 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → 𝑑 Btwn ⟨𝐶, 𝑏⟩)
58 btwncolinear2 34299 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝑑 ∈ (𝔼‘𝑁))) → (𝑑 Btwn ⟨𝐶, 𝑏⟩ → 𝐶 Colinear ⟨𝑑, 𝑏⟩))
591, 2, 26, 15, 58syl13anc 1370 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (𝑑 Btwn ⟨𝐶, 𝑏⟩ → 𝐶 Colinear ⟨𝑑, 𝑏⟩))
6059adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → (𝑑 Btwn ⟨𝐶, 𝑏⟩ → 𝐶 Colinear ⟨𝑑, 𝑏⟩))
6157, 60mpd 15 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → 𝐶 Colinear ⟨𝑑, 𝑏⟩)
62 simp33 1209 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → 𝑅 ∈ (𝔼‘𝑁))
63 simpr2r 1231 . . . . . . . . . . . . . 14 (((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))) → ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩)
6463ad2antll 725 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩)
65 btwnconn1lem5 34320 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ (𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩))) → ⟨𝐸, 𝐶⟩Cgr⟨𝐸, 𝑐⟩)
6647, 50, 65syl2an 595 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝐸, 𝐶⟩Cgr⟨𝐸, 𝑐⟩)
67 opeq2 4802 . . . . . . . . . . . . . . . . . . 19 (𝑅 = 𝐶 → ⟨𝐶, 𝑅⟩ = ⟨𝐶, 𝐶⟩)
6867breq1d 5080 . . . . . . . . . . . . . . . . . 18 (𝑅 = 𝐶 → (⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩ ↔ ⟨𝐶, 𝐶⟩Cgr⟨𝐶, 𝐸⟩))
6968anbi1d 629 . . . . . . . . . . . . . . . . 17 (𝑅 = 𝐶 → ((⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩ ∧ ⟨𝐸, 𝐶⟩Cgr⟨𝐸, 𝑐⟩) ↔ (⟨𝐶, 𝐶⟩Cgr⟨𝐶, 𝐸⟩ ∧ ⟨𝐸, 𝐶⟩Cgr⟨𝐸, 𝑐⟩)))
7069biimpac 478 . . . . . . . . . . . . . . . 16 (((⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩ ∧ ⟨𝐸, 𝐶⟩Cgr⟨𝐸, 𝑐⟩) ∧ 𝑅 = 𝐶) → (⟨𝐶, 𝐶⟩Cgr⟨𝐶, 𝐸⟩ ∧ ⟨𝐸, 𝐶⟩Cgr⟨𝐸, 𝑐⟩))
71 simp2r3 1275 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → 𝐸 ∈ (𝔼‘𝑁))
72 cgrid2 34232 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝐶⟩Cgr⟨𝐶, 𝐸⟩ → 𝐶 = 𝐸))
731, 2, 2, 71, 72syl13anc 1370 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝐶⟩Cgr⟨𝐶, 𝐸⟩ → 𝐶 = 𝐸))
74 opeq1 4801 . . . . . . . . . . . . . . . . . . . 20 (𝐶 = 𝐸 → ⟨𝐶, 𝐶⟩ = ⟨𝐸, 𝐶⟩)
75 opeq1 4801 . . . . . . . . . . . . . . . . . . . 20 (𝐶 = 𝐸 → ⟨𝐶, 𝑐⟩ = ⟨𝐸, 𝑐⟩)
7674, 75breq12d 5083 . . . . . . . . . . . . . . . . . . 19 (𝐶 = 𝐸 → (⟨𝐶, 𝐶⟩Cgr⟨𝐶, 𝑐⟩ ↔ ⟨𝐸, 𝐶⟩Cgr⟨𝐸, 𝑐⟩))
7776biimpar 477 . . . . . . . . . . . . . . . . . 18 ((𝐶 = 𝐸 ∧ ⟨𝐸, 𝐶⟩Cgr⟨𝐸, 𝑐⟩) → ⟨𝐶, 𝐶⟩Cgr⟨𝐶, 𝑐⟩)
78 cgrid2 34232 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝐶⟩Cgr⟨𝐶, 𝑐⟩ → 𝐶 = 𝑐))
791, 2, 2, 3, 78syl13anc 1370 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝐶⟩Cgr⟨𝐶, 𝑐⟩ → 𝐶 = 𝑐))
8077, 79syl5 34 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → ((𝐶 = 𝐸 ∧ ⟨𝐸, 𝐶⟩Cgr⟨𝐸, 𝑐⟩) → 𝐶 = 𝑐))
8173, 80syland 602 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → ((⟨𝐶, 𝐶⟩Cgr⟨𝐶, 𝐸⟩ ∧ ⟨𝐸, 𝐶⟩Cgr⟨𝐸, 𝑐⟩) → 𝐶 = 𝑐))
8270, 81syl5 34 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (((⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩ ∧ ⟨𝐸, 𝐶⟩Cgr⟨𝐸, 𝑐⟩) ∧ 𝑅 = 𝐶) → 𝐶 = 𝑐))
8382expd 415 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → ((⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩ ∧ ⟨𝐸, 𝐶⟩Cgr⟨𝐸, 𝑐⟩) → (𝑅 = 𝐶𝐶 = 𝑐)))
8483adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ((⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩ ∧ ⟨𝐸, 𝐶⟩Cgr⟨𝐸, 𝑐⟩) → (𝑅 = 𝐶𝐶 = 𝑐)))
8564, 66, 84mp2and 695 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → (𝑅 = 𝐶𝐶 = 𝑐))
8685necon3d 2963 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → (𝐶𝑐𝑅𝐶))
877, 86mpd 15 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → 𝑅𝐶)
88 simpr2l 1230 . . . . . . . . . . . 12 (((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))) → 𝐶 Btwn ⟨𝑑, 𝑅⟩)
8988ad2antll 725 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → 𝐶 Btwn ⟨𝑑, 𝑅⟩)
90 btwncolinear4 34301 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝑑, 𝑅⟩ → 𝑅 Colinear ⟨𝐶, 𝑑⟩))
911, 15, 62, 2, 90syl13anc 1370 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝑑, 𝑅⟩ → 𝑅 Colinear ⟨𝐶, 𝑑⟩))
9291adantr 480 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → (𝐶 Btwn ⟨𝑑, 𝑅⟩ → 𝑅 Colinear ⟨𝐶, 𝑑⟩))
9389, 92mpd 15 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → 𝑅 Colinear ⟨𝐶, 𝑑⟩)
94 simpr3r 1233 . . . . . . . . . . . 12 (((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))) → ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩)
9594ad2antll 725 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩)
961, 62, 5, 62, 4, 95cgrcomand 34220 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝑅, 𝑃⟩Cgr⟨𝑅, 𝑄⟩)
971, 62, 2, 15, 4, 5, 87, 93, 96, 23linecgrand 34311 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝑑, 𝑃⟩Cgr⟨𝑑, 𝑄⟩)
981, 2, 15, 26, 4, 5, 52, 61, 23, 97linecgrand 34311 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝑏, 𝑃⟩Cgr⟨𝑏, 𝑄⟩)
99 opeq1 4801 . . . . . . . . . 10 (𝑐 = 𝑏 → ⟨𝑐, 𝑃⟩ = ⟨𝑏, 𝑃⟩)
100 opeq1 4801 . . . . . . . . . 10 (𝑐 = 𝑏 → ⟨𝑐, 𝑄⟩ = ⟨𝑏, 𝑄⟩)
10199, 100breq12d 5083 . . . . . . . . 9 (𝑐 = 𝑏 → (⟨𝑐, 𝑃⟩Cgr⟨𝑐, 𝑄⟩ ↔ ⟨𝑏, 𝑃⟩Cgr⟨𝑏, 𝑄⟩))
102101biimprd 247 . . . . . . . 8 (𝑐 = 𝑏 → (⟨𝑏, 𝑃⟩Cgr⟨𝑏, 𝑄⟩ → ⟨𝑐, 𝑃⟩Cgr⟨𝑐, 𝑄⟩))
10343, 98, 102syl6ci 71 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → (𝐵 = 𝑏 → ⟨𝑐, 𝑃⟩Cgr⟨𝑐, 𝑄⟩))
104103com12 32 . . . . . 6 (𝐵 = 𝑏 → ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝑐, 𝑃⟩Cgr⟨𝑐, 𝑄⟩))
105 simprl 767 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ (𝐵𝑏 ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩)))))) → 𝐵𝑏)
10634adantrl 712 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ (𝐵𝑏 ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩)))))) → 𝑐 Btwn ⟨𝐵, 𝑏⟩)
107 btwncolinear1 34298 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁))) → (𝑐 Btwn ⟨𝐵, 𝑏⟩ → 𝐵 Colinear ⟨𝑏, 𝑐⟩))
1081, 25, 26, 3, 107syl13anc 1370 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (𝑐 Btwn ⟨𝐵, 𝑏⟩ → 𝐵 Colinear ⟨𝑏, 𝑐⟩))
109108adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ (𝐵𝑏 ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩)))))) → (𝑐 Btwn ⟨𝐵, 𝑏⟩ → 𝐵 Colinear ⟨𝑏, 𝑐⟩))
110106, 109mpd 15 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ (𝐵𝑏 ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩)))))) → 𝐵 Colinear ⟨𝑏, 𝑐⟩)
111 simp1rl 1236 . . . . . . . . . . . . . 14 ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)
112111ad2antrl 724 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)
1131, 24, 25, 2, 15, 112, 54btwnexch3and 34250 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → 𝐶 Btwn ⟨𝐵, 𝑑⟩)
114 btwncolinear6 34303 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝑑 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝐵, 𝑑⟩ → 𝐶 Colinear ⟨𝑑, 𝐵⟩))
1151, 25, 15, 2, 114syl13anc 1370 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝐵, 𝑑⟩ → 𝐶 Colinear ⟨𝑑, 𝐵⟩))
116115adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → (𝐶 Btwn ⟨𝐵, 𝑑⟩ → 𝐶 Colinear ⟨𝑑, 𝐵⟩))
117113, 116mpd 15 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → 𝐶 Colinear ⟨𝑑, 𝐵⟩)
1181, 2, 15, 25, 4, 5, 52, 117, 23, 97linecgrand 34311 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝐵, 𝑃⟩Cgr⟨𝐵, 𝑄⟩)
119118adantrl 712 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ (𝐵𝑏 ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩)))))) → ⟨𝐵, 𝑃⟩Cgr⟨𝐵, 𝑄⟩)
12098adantrl 712 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ (𝐵𝑏 ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩)))))) → ⟨𝑏, 𝑃⟩Cgr⟨𝑏, 𝑄⟩)
1211, 25, 26, 3, 4, 5, 105, 110, 119, 120linecgrand 34311 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ (𝐵𝑏 ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩)))))) → ⟨𝑐, 𝑃⟩Cgr⟨𝑐, 𝑄⟩)
122121an12s 645 . . . . . . 7 ((𝐵𝑏 ∧ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩)))))) → ⟨𝑐, 𝑃⟩Cgr⟨𝑐, 𝑄⟩)
123122ex 412 . . . . . 6 (𝐵𝑏 → ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝑐, 𝑃⟩Cgr⟨𝑐, 𝑄⟩))
124104, 123pm2.61ine 3027 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝑐, 𝑃⟩Cgr⟨𝑐, 𝑄⟩)
1251, 2, 3, 4, 4, 5, 7, 13, 23, 124linecgrand 34311 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝑃, 𝑃⟩Cgr⟨𝑃, 𝑄⟩)
126 cgrid2 34232 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (⟨𝑃, 𝑃⟩Cgr⟨𝑃, 𝑄⟩ → 𝑃 = 𝑄))
1271, 4, 4, 5, 126syl13anc 1370 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (⟨𝑃, 𝑃⟩Cgr⟨𝑃, 𝑄⟩ → 𝑃 = 𝑄))
128127adantr 480 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → (⟨𝑃, 𝑃⟩Cgr⟨𝑃, 𝑄⟩ → 𝑃 = 𝑄))
129125, 128mpd 15 . . 3 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → 𝑃 = 𝑄)
130 btwnconn1lem10 34325 . . 3 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩)
131 opeq1 4801 . . . . . . 7 (𝑃 = 𝑄 → ⟨𝑃, 𝑄⟩ = ⟨𝑄, 𝑄⟩)
132131breq2d 5082 . . . . . 6 (𝑃 = 𝑄 → (⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩ ↔ ⟨𝑑, 𝐷⟩Cgr⟨𝑄, 𝑄⟩))
133132biimpa 476 . . . . 5 ((𝑃 = 𝑄 ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩) → ⟨𝑑, 𝐷⟩Cgr⟨𝑄, 𝑄⟩)
134 axcgrid 27187 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (⟨𝑑, 𝐷⟩Cgr⟨𝑄, 𝑄⟩ → 𝑑 = 𝐷))
1351, 15, 14, 5, 134syl13anc 1370 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (⟨𝑑, 𝐷⟩Cgr⟨𝑄, 𝑄⟩ → 𝑑 = 𝐷))
136133, 135syl5 34 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → ((𝑃 = 𝑄 ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩) → 𝑑 = 𝐷))
137136adantr 480 . . 3 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ((𝑃 = 𝑄 ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩) → 𝑑 = 𝐷))
138129, 130, 137mp2and 695 . 2 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → 𝑑 = 𝐷)
139138eqcomd 2744 1 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → 𝐷 = 𝑑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cop 4564   class class class wbr 5070  cfv 6418  cn 11903  𝔼cee 27159   Btwn cbtwn 27160  Cgrccgr 27161   Colinear ccolin 34266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-ee 27162  df-btwn 27163  df-cgr 27164  df-ofs 34212  df-colinear 34268  df-ifs 34269  df-cgr3 34270  df-fs 34271
This theorem is referenced by:  btwnconn1lem13  34328
  Copyright terms: Public domain W3C validator